Abstract:
There is disclosed a refrigerator including a case having a storage chamber provided therein; a lighting device provided in the storage chamber to light an inner space of the storage chamber, a first door rotatably coupled to the case to open and close the storage chamber, an auxiliary storage chamber (50) provided in the first door to define a storage space, the auxiliary storage chamber (50) accessible through an opening formed in the first door, a second door (30) rotatably coupled to the first door in the same direction as the first door, a front panel attached to a front surface of the second door (30), the front panel formed of a transparent material, an evaporation treatment unit evaporated on an overall back surface of the front panel to transmit lights partially, a variable transparency film (120) attached to a back surface of the evaporation treatment unit provided in the front panel to get transparent when the power is supplied, a frame unit of the second door (30) on which the front panel is mounted, with an opening having a corresponding size to an opening provided in the first door, an insulation panel provided in the frame unit of the second door (30), distant from the front panel, a power supply unit for supplying an electric power to the variable transparency film (120) and the lighting device, a proximity sensor provided in the second door (30) to sense a user's approaching, and a control unit for controlling the power supply unit to simultaneously operate the variable transparency film (120) and the lighting device based on a sensing signal of the proximity sensor.
Abstract:
An insulated icemaking compartment is provided in the fresh food compartment of a bottom mount refrigerator. The icemaking compartment may be integrally formed with the liner of the fresh food compartment, or alternatively, may be modular for installation anywhere in the fresh food compartment. A removable bin assembly with a front cover normally seals the icemaking compartment to maintain the temperature in the compartment. A cold air duct formed in the rear wall of the refrigerator supplies cold air from the freezer compartment to the icemaking compartment. A return air duct directs a portion of the air from the icemaking compartment back to the freezer compartment. An air vent in the icemaking compartment directs another portion of air into the fresh food compartment. A control system provides for controlling refrigerator functions in a manner that promotes energy efficiency.
Abstract:
A refrigeration device of an embodiment includes: a heat-insulating vacuum chamber; a refrigerator cryogenic unit that is provided in the heat-insulating vacuum chamber and is cooled to a lower temperature than 195 K; a catalytic electrode that is provided in the heat-insulating vacuum chamber and contains a transition metal at least in part of a surface thereof; a power supply that applies a voltage to the catalytic electrode; and a heating unit that is provided in the heat-insulating vacuum chamber and heats the catalytic electrode. In this refrigeration device, the catalytic electrode is insulated from the heat-insulating vacuum chamber and the heating unit, and the heating unit is insulated from the heat-insulating vacuum chamber and the catalytic electrode.
Abstract:
Disclosed herein is a refrigerator in which a level difference between an inner cabinet and an outer cabinet is improved in coupling the inner cabinet with the outer cabinet by forming a corner of the inner cabinet located at a portion coupled with the outer cabinet to have a smaller radius. The refrigerator includes an inner cabinet in which a storage chamber is formed. The refrigerator also includes an outer cabinet coupled with an outside of the inner cabinet and configured to form an exterior. The refrigerator further includes an insulating material filling between the inner cabinet and the outer cabinet. The inner cabinet includes a storage portion configured to form the storage chamber. The inner cabinet also includes an edge portion configured to extend in a vertical direction toward the outside of the storage portion from a front surface edge of the storage portion and exposed to the outside. The inner cabinet further includes a contact portion configured to extend in a vertical direction toward a rear direction from the edge portion and in contact with the outer cabinet when coupling with the outer cabinet. The inner cabinet includes a seating portion disposed in a rear direction of a front surface portion of the outer cabinet in contact with the contact portion and in parallel with the edge portion. The contact portion extends in a rear direction more than an end of the seating portion adjacent to the contact portion from the edge portion.
Abstract:
This specification relates to a vegetable storage container for a refrigerator, and more particularly, a sealing structure of a vegetable storage container for a refrigerator capable of sealing an inside of an accommodation space of a vegetable box simply by using a lever after closing the accommodation space with a cover. This specification provides a refrigerator with a vegetable storage container, which includes a vegetable box having a front part and a main body both forming an accommodation space therein as a storage space for vegetables, the vegetable box being installed to be drawn out of the refrigerator, a vegetable box cover horizontally installed on the accommodation space to selectively cover an upper opening of the vegetable box, and a pressing unit to seal the accommodation space after the accommodation space of the vegetable box is closed by the vegetable box cover.
Abstract:
An insulated icemaking compartment is provided in the fresh food compartment of a bottom mount refrigerator. The icemaking compartment may be integrally formed with the liner of the fresh food compartment, or alternatively, may be modular for installation anywhere in the fresh food compartment. A removable bin assembly with a front cover normally seals the icemaking compartment to maintain the temperature in the compartment. A cold air duct formed in the rear wall of the refrigerator supplies cold air from the freezer compartment to the icemaking compartment. A return air duct directs a portion of the air from the icemaking compartment back to the freezer compartment. An air vent in the icemaking compartment directs another portion of air into the fresh food compartment. A control system provides for controlling refrigerator functions in a manner that promotes energy efficiency.
Abstract:
An insulated icemaking compartment is provided in the fresh food compartment of a bottom mount refrigerator. The icemaking compartment may be integrally formed with the liner of the fresh food compartment, or alternatively, may be modular for installation anywhere in the fresh food compartment. A removable bin assembly with a front cover normally seals the icemaking compartment to maintain the temperature in the compartment. A cold air duct formed in the rear wall of the refrigerator supplies cold air from the freezer compartment to the icemaking compartment. A return air duct directs a portion of the air from the icemaking compartment back to the freezer compartment. An air vent in the icemaking compartment directs another portion of air into the fresh food compartment. A control system provides for controlling refrigerator functions in a manner that promotes energy efficiency.
Abstract:
There is disclosed a refrigerator including an inner case that defines an exterior appearance of a storage space, with a communication hole formed therein, an outer case spaced apart a predetermined distance from the inner case, with a communication formed at a position corresponding to the communication hole of the inner case, a vacuum space provided between the inner case and the outer case, with being maintained vacuum, to insulate the inner case from the outer case, and a connection pipe passing through the vacuum space, to connect the communication hole of the inner case and the communication hole of the outer case with each other.
Abstract:
An adsorbent capable of adsorbing gas low in activity such as nitrogen is used, and a thermal insulator high in production efficiency and excellent in adiabatic performance is presented. A thermal insulator has an adsorbent, a core material, and an enveloping member. The adsorbent includes Li and solid matter of hardness of 5 or more. The gas adsorbing activity becomes very high, and for embodiment by evacuating to a certain degree of vacuum by using a vacuum pump, the remaining gas is adsorbed by the adsorbent of the invention to obtain a desired degree of vacuum, so that a thermal insulator of high production efficiency is obtained. Since the heat conductivity is decreased by adsorbing gas of low activity in the enveloping member, the adiabatic performance is enhanced.
Abstract:
An insulated ice making compartment is provided in the fresh food compartment of a bottom mount refrigerator. The ice making compartment may be integrally formed with the liner of the fresh food compartment, or alternatively, may be modular for installation anywhere in the fresh food compartment. A removable bin assembly with a front cover normally seals the ice making compartment to maintain the temperature in the compartment. A cold air duct formed in the rear wall of the refrigerator supplies cold air from the freezer compartment to the ice making compartment. A return air duct directs a portion of the air from the ice making compartment back to the freezer compartment. An air vent in the ice making compartment directs another portion of air into the fresh food compartment. A control system provides for controlling refrigerator functions in a manner that promotes energy efficiency. The refrigerator has an improved water fill tube for the ice maker.