Abstract:
A capacitance-type force sensor is provided with a fixed plate, a fixed portion on which the fixed plate is mounted, a load transmission portion, and an elastic portion through which the load transmission portion is mounted on the fixed portion. All these members are formed of materials having substantially equal coefficients of linear expansion. Further, a displacement electrode secured to the load transmission portion and/or a fixed electrode secured to the fixed plate is divided into three or more electrically independent electrodes such that the displacement and fixed electrodes form three or more capacitance elements.
Abstract:
An example method includes measuring a capacitance of an actuator and a conductive element when, responsive to a force applied to the actuator, the actuator is coupled to a reference voltage and deformed such that surface area of the actuator proximate to the conductive element increases. The example method includes determining the force applied to the actuator based on the measured capacitance.
Abstract:
A sensor for monitoring external loads acting on a pin assembly includes a pin having an axial interior bore defined therein and having a length defined from a first end to an opposed second end thereof. A core pin is mounted axially within the interior bore of the pin spaced radially inwardly from the interior bore for relative displacement with respect to the pin. A capacitor is provided having an inner capacitor plate mounted to the core pin, and an outer capacitor plate mounted to the pin, such that relative displacement of the core and the pin due to external loading on the pin results in relative displacement of the inner and outer capacitor plates. The capacitor is configured and adapted to be connected to an electrical circuit to produce signals indicative of external loading on the pin based on relative displacement of the inner and outer capacitor plates.
Abstract:
A sealed capacitive sensor includes a substrate having a diaphragm forming a first plate of a capacitor; a second fixed plate of the capacitor spaced from the diaphragm and defining a predetermined dielectric gap and a sealing medium connecting together the substrate and fixed plate in an integrated structure and hermetically sealing the gap.
Abstract:
A flexible apparatus and method to enhance capacitive force sensing is disclosed. In one embodiment, a force measuring device includes a sensor capacitor having a fixed surface and a moveable surface substantially parallel to the fixed surface, at least one spring assembly (e.g., may deflect longitudinally and/or perpendicularly to a direction of the force) positioned between the fixed surface and the movable surface (e.g., the spring assembly may alter in height in response to a force applied perpendicular to the movable surface and to cause a change in the gap between the fixed surface and the movable surface), and a circuit to generate a measurement of the force based on an algorithm that considers a change in a capacitance of the sensor capacitor. A reference capacitor may adjust the measurement of the applied force based on one or more environmental conditions.
Abstract:
A capacitive load cell with an integral membrane and mechanically coupled conductive surfaces, deflected by the load, and mounted each side of an electrode carrier, where conductive electrodes are mounted on each side of the electrode carrier to face the mechanically coupled conductive surfaces to thereby form two or more sensor capacitances.
Abstract:
A capacitance type sensor good in operability and less in erroneous operation is provided. Switches SW1 to SW4 are formed between a displacement electrode 40 and switch electrodes E11 to E14 kept at a predetermined potential and grounded switch electrodes E15 to E18. Switches SW 11 to SW 15 are connected to respective capacitance electrodes E1 to E5 that cooperate with the displacement electrode 40 to form capacitance elements. A decision circuit judges states of the switches SW1 to SW4. When at least one of the switches SW1 to SW4 is off, periodic signals are input only to the capacitance electrodes E1 to E4 corresponding to X- and Y-axial directions. When any of the switches SW1 to SW4 is on, a periodic signal is input only to the capacitance electrode E5 corresponding to a Z-axial direction.
Abstract:
The flexible electroluminescent capacitive sensor system contains an electroluminescent capacitive sensor, a capacitance meter, and an electroluminescence electronic drive. The capacitive sensor contains in order a first barrier layer, a first transparent electrode layer, a phosphor layer, a second electrode layer, a flexible, resilient dielectric layer, and an electrically conductive reference layer. The capacitance meter is electrically connected to the electrically conductive reference layer and either the second electrode layer or the first electrode layer. The electroluminescence electronic drive is electrically connected to the first transparent electrode layer and the second electrode layer. The first electrode layer has a first voltage, the second electrode layer has a second voltage, and the conductive reference layer has a third voltage. The first or second electrodes may be patterned to allow for multiple sensor regions integrated into a single sensor structure.
Abstract:
The present invention relates to dielectric actuators or sensors of the kind wherein electrostatic attraction between two electrodes located on an elastomeric body leads to a compression of the body in a first direction and a corresponding extension of the body in a second direction. The dielectric actuator/sensor structure comprises a first sheet of elastomeric material having at least one smooth surface and a second surface and a second sheet of elastomeric material having at least one smooth surface and a second surface. The sheets are laminated together with their second surfaces exposed, and there is provided a first electrode on the second surface of the first sheet and second electrode on the second surface of the second sheet.
Abstract:
A force-measuring element, having a series connection of at least two capacitors, the force-measuring element being designed in such a way that, under the action of force, a first capacitance of a first capacitor of the at least two capacitors increases and a second capacitance of a second capacitor of the at least two capacitors decreases, in which the force-measuring element is in the form of a connecting element, in which an application of force is provided on a long side of a sleeve of the force-measuring element, and the at least two capacitors are separated by a bar that essentially stands firm during the action of force, so that a first space having the first capacitor above the bar becomes smaller as a result of the application of force, and below the bar a second space becomes larger.