Abstract:
An apparatus includes (i) a bright light source for providing an illumination beam at multiple wavelengths selectable with a range from a deep ultraviolet wavelength to an infrared wavelength, (ii) illumination optics for directing the illumination beam towards a sample at selectable sets of angles of incidence (AOI's) or azimuth angles (AZ's) and polarization states to provide spectroscopic ellipsometry, wherein the illumination optics include an apodizer for controlling a spot size of the illumination beam on the sample at each of the selectable AOI/AZ sets, (iii) collection optics for directing an output beam from the sample in response to the illumination beam at each of the selectable AOI/AZ sets and polarization states towards a detector that generates an output signal or image based on the output beam, and (v) a controller for characterizing a feature of the sample based on the output signal or image.
Abstract:
A device for quantifying biological material (ATP) of cells contained in a liquid sample as a sample is provided. The device includes a controller that calculates an amount of the biological material of cells contained in the liquid sample, based on a differential amount of luminescence between an amount of luminescence when an ATP luminescence reagent as a luminescent reagent for biological material is reacted with the biological material (ATP) that is separated and extracted from cells contained in the liquid sample by bringing an ATP extraction reagent as a processing reagent into contact with the liquid sample, and an amount of luminescence when the ATP luminescent reagent is reacted with the ATP extraction reagent.
Abstract:
Methods and systems to resolve positions of sample components in fluorescence stochastic microscopy using three-dimensional structured illumination microscopy (“3D-SIM”) are disclosed. In one aspect, components of a sample specimen are labeled with fluorophores and weakly illuminated with a frequency of light to stochastically convert a subset of the fluorophores into an active state. The sample is then illuminated with a three-dimensional structured illumination pattern (“3D-SIP”) of excitation light that causes the activated fluorophores to fluoresce. As the 3D-SIP is incrementally moved within the volume of the sample and images are recorded, computational methods are used to process the images to locate and refine the locations of the activated fluorophores thereby generating a super-resolution image of sample components.
Abstract:
An inspection system for inspecting a semiconductor wafer. The inspection system comprises an illumination setup for supplying broadband illumination. The broadband illumination can be of different contrasts, for example brightfield and darkfield broadband illumination. The inspection system further comprises a first image capture device and a second image capture device, each configured for receiving broadband illumination to capture images of the semiconductor wafer while the semiconductor wafer is in motion. The system comprises a number of tube lenses for enabling collimation of the broadband illumination. The system also comprises a stabilizing mechanism and an objective lens assembly. The system further comprises a thin line illumination emitter and a third image capture device for receiving thin line illumination to thereby capture three-dimensional images of the semiconductor wafer. The system comprises a reflector assembly for enabling the third image capture device to receive illumination reflected from the semiconductor wafer in multiple directions.
Abstract:
A measuring device (2) draws out an aerosol air mixture from the working chamber (4) of the machine and feeds it to an optical sensor unit with an optical emitter (15) and an optical receiver (17). A compressed air jet pump (8) includes a compressed air feed (26), a compressed air nozzle (32), a preferably funnel-shaped pressure discharge channel and an underpressure region (10), with the compressed air nozzle (32) having an outlet direction oriented substantially in the direction of the pressure discharge channel. The compressed air feed (26) is connected to a compressed air source. A suction line is connected between the working chamber (4) and the underpressure region (10). The optical sensor unit has an optical passage between the optical emitter (15) and the optical receiver (17) oriented substantially perpendicular to the outlet direction of the compressed air nozzle (32) and leads through the underpressure region.
Abstract:
Disclosed are methods and apparatus for reflecting, towards a sensor, extreme ultra-violet (EUV) light that is reflected from a target substrate. The system includes a first mirror arranged to receive and reflect the EUV light that is reflected from the target substrate, a second mirror arranged to receive and reflect the EUV light that is reflected by the first mirror, a third mirror arranged to receive and reflect the EUV light that is reflected by the second mirror, and a fourth mirror arranged to receive and reflect the EUV light that is reflected by the third mirror. The first mirror has an aspherical surface. The second, third, and fourth mirrors each have a spherical surface.
Abstract:
A device for determining a concentration of at least one gas in a sample gas stream includes an analysis chamber, a detector, and a connecting channel. The analysis chamber is configured to have the sample gas stream and a reaction gas stream be introduced therein. The sample gas stream and the reaction gas stream are mixed to a gas mixture which reacts so as to emit an optical radiation. The detector is configured to measure the optical radiation. The connecting channel is configured to connect the analysis chamber to the detector. The connecting channel is configured as a light conductor extending from the analysis chamber to the detector.
Abstract:
A catadioptric optical system operates in a wide spectral range. In an embodiment, the catadioptric optical system includes a first reflective surface positioned and configured to reflect radiation; a second reflective surface positioned and configured to reflect radiation reflected from the first reflective surface as a collimated beam, the second reflective surface having an aperture to allow transmission of radiation through the second reflective surface; and a channel structure extending from the aperture toward the first reflective surface and having an outlet, between the first reflective surface and the second reflective surface, to supply radiation to the first reflective surface.
Abstract:
An information acquiring apparatus that acquires information on a specimen by applying terahertz wave to the specimen through a plate-like member, the specimen being provided between a reflecting member having a reflecting surface and the plate-like member. The apparatus includes an applying unit that applies the terahertz wave to the specimen, a detecting unit that detects the terahertz wave reflected from the specimen, and an information acquiring unit that acquires the information on the specimen by using temporal waveforms acquired from a result of detection performed by the detecting unit, the information acquiring unit using at least a temporal waveform representing a portion of the terahertz wave that is reflected by an interface between the plate-like member and the specimen and a temporal waveform representing a portion of the terahertz wave that is reflected by an interface between the specimen and the reflecting surface of the reflecting member.
Abstract:
A light guide member for an object detection apparatus for detecting an object adhered on a light translucent member based on change of quantity of reflection light received from the light translucent member includes a detection face where light exits to the light translucent member and reflection light reflected from the light translucent member enters, the detection face including a detection area where a part of the reflection light to enter the detection unit passes through, and a non-detection area where remaining part of the reflection light not to enter the detection unit passes through; a first intervening member disposed on the detection face attachable to the light translucent member via the first intervening member; and a second intervening member disposed on the detection face attachable to the light translucent member via the second intervening member. The first intervening member has flexibility greater than flexibility of the second intervening member.