Abstract:
A borescope calibration device is provided that includes a base having a planar surface and a plurality of reference surfaces on a side of the base opposing the planar surface, each of the plurality of reference surfaces having a height that decreases along a length of the base, a fixture that positions an optical head along a reference line that is parallel to the planar surface and providing a fixed distance between the reference surfaces and the optical head, the fixture being movable along a length of the base, and a target pattern formed on each of the reference surfaces.
Abstract:
Provided herein are techniques for improved optical absorption measurements in the presence of time-varying etalons. In one aspect, a method for dynamic etalon fitting for adaptive background noise reduction in an optical sensor is provided. The method includes the steps of: obtaining a zero-gas spectrum measured using the optical sensor; obtaining an analyte gas spectrum of a target trace gas measured using the optical sensor; comparing the zero-gas spectrum and the analyte gas spectrum using fit parameters that compensate for drifting etalons in the optical sensor; and dynamically extracting the drifting etalons from the analyte gas spectrum to retrieve concentration of the target trace gas.
Abstract:
A kit and method for manufacturing a reference standard for a water detection unit includes a substrate and a tray configured to receive the substrate therein. A tank is configured to receive at least one of the trays therein, wherein a fluorescent solution comprising water and uranine is provided to the tank via an inlet. The solution rises within the tank to saturate the substrate. The trays are then placed in a rotatable rack wherein the substrates are dried to remove excess solution. The dried substrates are then hermetically sealed within a transparent envelope.
Abstract:
The present invention discloses a method for measuring the concentration of a photoresist in a stripping liquid. In the method for measuring the concentration of a photoresist in a stripping liquid, a plurality of standard photoresist samples are prepared at first, then the spectrum of the standard photoresist samples and the spectrum of the test photoresist sample are collected, and the nth derivative of the spectrum of the standard photoresist samples and the spectrum of the test photoresist sample are taken, wherein n is an integer equal to or greater than 1, a standard curve based on the nth derivative curves and calculating the concentration of the test photoresist sample is established, the concentration of a photoresist in a stripping liquid can be measured accurately according to the standard curve.
Abstract:
Described herein is a method, system and computer program for analyzing a colorimetric assay that includes obtaining an image of the assay, optionally correcting for ambient lighting conditions in the image, converting the intensity data for at least one of the red channel, the green channel, or the blue channel to a first data point, recalling a predetermined standardized curve, comparing the first data point with the standardized curve, and identifying the value for the assay parameter from the standardized curve.
Abstract:
There is provided a test method for analyzing a body fluid in which a test tape is used in a test device to successively provide analytical test fields stored on the test tape, wherein body fluid is applied by a user to the test field provided at a time and the said test field is photometrically scanned using a measuring unit of the device to record measurement signals. To increase the measurement reliability, it is proposed that a control value is determined from a time-dependent and/or wavelength-dependent change in the measurement signals and that the measurement signals are processed as valid or discarded as erroneous depending on the control value.
Abstract:
An optical system of an optical analysis device is easily evaluated with high accuracy.There is provided a method of evaluating an optical analysis device including an optical system A capable of forming a confocal volume C at a focal position by condensing excitation light B, the method including the steps of: placing, at the focal position of the optical system A, a phantom sample in which two or more types of solid members having different fluorescent substance concentrations are arranged adjacent to each other; irradiating the phantom sample 1 with excitation light through the optical system A while relatively moving the confocal volume C formed by the optical system A and the phantom sample in an arrangement direction of the solid members; detecting fluorescent light generated in the solid members placed in the confocal volume C; and evaluating the optical system A based on the detected fluorescent light.
Abstract:
A gas detection system using a semiconductor laser with a reference gas cavity compensation is provided, said system comprising a first light source emitting a first beam of a first wavelength as a detection beam; a second light source emitting a second beam of a second wavelength, which is different from the first wavelength, as a reference beam; a first wavelength division multiplexer connected with said first light source and said second light source; a broadband coupler connected with said first wavelength division multiplexer; a reference gas chamber, which is introduced with reference gas of the same composition as that of the gas to be detected and of a known concentration; a detection gas chamber, which is introduced with the gas to be detected.
Abstract:
In one aspect, the disclosure provides methods for using NMR and NIR to evaluate biological samples. In some embodiments, the methods include a step of performing a Nuclear Magnetic Resonance (NMR) analysis on a sample to obtain an NMR spectrum, a step of performing a Near Infrared Spectroscopy (NIR) analysis on the sample to obtain an NIR spectrum, and/or a step of performing a data fusion analysis to evaluate the NIR spectrum.
Abstract:
A method of characterizing a multi-component mixture for use in a bioprocess operation that includes providing a multi-component mixture standard with pre-determined amounts of known components; performing a Raman Spectroscopy analysis on the multi-component mixture standard; providing a multi-component test mixture from the bioprocess operation; performing a Raman Spectroscopy analysis on the multi-component test mixture; and comparing the analysis of the multi-component mixture standard and the multi-component test mixture to characterize the multi-component test mixture. In one embodiment, the multi-component mixture standard and the multi-component test mixture both comprise one or more of, at least two, at least three of, or each of, a polysaccharide (e.g. sucrose or mannitol), an amino acid (e.g., L-arginine, L-histidine or L-ornithine), a surfactant (e.g. polysorbate 80) and a pH buffer (e.g., a citrate formulation).