Abstract:
An integrated fiber optic switch based on the magneto-optic effect of magnetic materials suitable for optical fiber networks is presented. The switch is based on the Faraday Effect exhibited by magneto-optic materials. The all-fiber magneto-optic switch has a beam splitter at the input that splits an incoming signal into orthogonal polarized paths. Each path has at least one magneto-optic Faraday rotator (MOFR) controlled by a field. When the field is present, the polarization of the optical beam changes, thereby turning the switch on or off. A beam coupler couples the orthogonal polarized paths at the output of the all-fiber magneto-optic switch. The switch is constructed in the Mach-Zehnder configuration, utilizing two 3 dB couplers, isolators and MOFRs fabricated on silicon-on-insulator.
Abstract:
The present invention provides methods, systems, and apparatus of improved fiber-based optical parametric oscillators (FOPOs). These oscillators can be used in the creation of short pulsed laser radiation, which are useful in numerous applications, such as characterization of materials and molecules. A relationship between fiber length and performance is realized, where shorter lengths counterintuitively provide greater power and width of output bands. This relationship is used to develop improved FOPOs. For example, fibers of 10 cm or less may be used to obtain superior performance in terms of wavelength tunability (e.g. bandwidth of 200 nm and greater) and output power (e.g. pulse power of 1 nJ). Other realized relationships between length and wavelength position of output bands are also used to select the wavelength range output from the FOPO. The diameter of the fiber may be selected to provide positioning (e.g. a centering) of the range of attainable output wavelengths.
Abstract:
A feedforward controller for controlling the polarization state of an optical signal. The feedforward controller includes an optical input for receiving an optical input signal having an input polarization state, an optical output for transmitting an optical output signal having an output polarization state, a polarization controller coupled to the optical input and the optical output, and a transfer function determiner for determining a characteristic polarization transfer function of the feedforward controller from the input and output polarization states. The polarization controller is adapted to modify the polarization state of light passing therethrough in dependence on the characteristic polarization transfer function of the feedforward controller.
Abstract:
A fiber lamp allowed to reduce an influence of heat, a backlight and a liquid crystal display both using the fiber lamp are provided. A fiber lamp includes: a side-emitting fiber including a core layer guiding light and a cladding layer arranged around the core layer, the cladding layer allowing light to be extracted from a surface of the cladding layer; a light source arranged on one or both of a pair of end surfaces of the side-emitting fiber and emitting single-color light; and a phosphor layer arranged on the surface of the cladding layer and including a red phosphor and a green phosphor.
Abstract:
An optical fiber module includes an optical fiber that transmits a light and a holding unit that holds the optical fiber in a state in which the optical fiber is stretched in its longitudinal direction to change optical characteristics of the optical fiber.
Abstract:
A programmable dopant fiber includes a plurality of quantum structures formed on a fiber-shaped substrate, wherein the substrate includes one or more energy-carrying control paths, which pass energy to quantum structures. Quantum structures may include quantum dot particles on the surface of the fiber or electrodes on top of barrier layers and a transport layer, which form quantum dot devices. The energy passing through the control paths drives charge carriers into the quantum dots, leading to the formation of “artificial atoms” with real-time, tunable properties. These artificial atoms then serve as programmable dopants, which alter the behavior of surrounding materials. The fiber can be used as a programmable dopant inside bulk materials, as a building block for new materials with unique properties, or as a substitute for quantum dots or quantum wires in certain applications.
Abstract:
An illumination system (8) comprises an optical waveguide (18) which is made from optically transparent components and has four end faces (10, 10′). A light source (12) whose light is coupled into the optical waveguide (18) via one of the end faces (10), is situated opposite this end face (10). The optical waveguide (18) has a light guide (30). A number of fibers (34) are attached to a surface (32) of the light guide (30). The fibers (34) have birefringent properties. A preferred method of providing the birefringent properties is to stretch fibers (34) of a suitable polymer plastic material in their longitudinal direction. The light from the light source (12) will be polarized by the fibers (34) and polarized light will be outcoupled from the optical waveguide (18) via an exit surface (16). The illumination system (8) may be used for front or back lightning of LCD panels for e.g. mobile phones, PDA's, etc.
Abstract:
An optical fiber sensor having a central core, a cladding layer disposed about the central core, and a thin film of lithium niobate positioned between the core and the cladding layer. Each of the cladding layer and the central core are made from glass materials having different indices of refraction. The refractive index of the lithium niobate film changes when stress is applied to the optical fiber sensor. Accordingly, stress may be detected and measured by detecting and measuring the modulation of light passing through the optical fiber sensor while the stress is occurring.
Abstract:
A programmable dopant fiber includes a plurality of quantum structures formed on a fiber-shaped substrate, wherein the substrate includes one or more energy-carrying control paths, which pass energy to quantum structures. Quantum structures may include quantum dot particles on the surface of the fiber or electrodes on top of barrier layers and a transport layer, which form quantum dot devices. The energy passing through the control paths drives charge carriers into the quantum dots, leading to the formation of “artificial atoms” with real-time, tunable properties. These artificial atoms then serve as programmable dopants, which alter the behavior of surrounding materials. The fiber can be used as a programmable dopant inside bulk materials, as a building block for new materials with unique properties, or as a substitute for quantum dots or quantum wires in certain applications.
Abstract:
A polarization dependent isolator includes a Faraday element, a linear polarizer positioned at a first end of the Faraday element to polarize light entering the first end of the Faraday element, and a single polarization fiber positioned at a second end of the Faraday element to receive light emerging from the second end of the Faraday element. A laser module includes a semiconductor laser diode, a Faraday element positioned adjacent the semiconductor laser diode, a linear polarizer positioned at a first end of the Faraday element nearest to the semiconductor laser diode to polarizer light passing from the laser diode to the first end of the Faraday element, and a single polarization fiber positioned at a second end of the Faraday element furthest from the semiconductor laser diode to receive light emerging from the second end of the Faraday element, wherein the single polarization fiber also serves as coupling output fiber for the laser module.