Abstract:
An electro-optical waveguide element with reduced DC drift phenomena is presented. The waveguide element is made up of an optical waveguide formed on a substrate possessing electro-optical effects, at least a pair of electrodes closely attached to the optical waveguide with a buffer layer sandwiched between the substrate and the electrodes, and a driver circuit for applying a voltage between the electrodes. The buffer layer is made of a material having a dielectric constant in the range of 20-1000. The buffer layer is more preferably made of a material having a dielectric constant in the range of 20-200. The material of the buffer layer is selected from the group consisting of HfO.sub.2, TiO.sub.2, SrTiO.sub.3, BaTiO.sub.3, LiNbO.sub.3, LiTaO.sub.3, Pb(Zr, Ti)O.sub.3, and (Pb, La)(Zr, Ti)O.sub.3.
Abstract:
An optical device for performing a light power transfer between two waveguides that includes a first waveguide, a second waveguide, a transfer rate control element for controlling a light power transfer rate between the first and second waveguides and an electric element for electrically controlling the transfer rate control element by imparting electric energy to the transfer rate control element. The transfer rate control element sets the light power transfer rate to zero when the transfer rate control element is in an inoperative state. The transfer rate control element falls into the inoperative state when the electric element imparts no electric energy to the transfer rate control element.
Abstract:
An optical device having a substrate with a waveguide layer on a surface thereof and a grating in the waveguide. The grating has a period such as to deflect light passing along the waveguide out of the optical device. The angle at which the light is emitted from the waveguide can be varied by varying the index of refraction of the material of the waveguide under the grating. This can be achieved by applying a voltage across the waveguide.
Abstract:
A light wavelength converter which includes a laser beam source for radiating fundamental waves, a first optical waveguide formed on a substrate so as to convert the fundamental waves into harmonics which are radiated through the substrate, a grating coupler provided on the substrate so as to receive the harmonics propagated through the substrate, and a second optical waveguide formed on the substrate, the second optical guide being connected to the grating coupler so as to radiate the harmonics outside.
Abstract:
In an optical micromechanical method for changing the phase of guided waves and a measurement method for measuring very small mechanical displacements and/or mechanical forces or pressures, including the pressure of sound waves and ultrasonic waves, and/or accelerations, the distance d between a section (1') of an optical waveguide (1) in an integrated optic or fibre optic circuit and a phase-shifting element (5) separated from said section (1') by a gap (4) is varied by forces (6) or by thermal expansion due to changes in temperature. The phase of the guided wave (3) is thereby modulated, and reciprocally the changes in distance d and hence small mechanical displacements and the forces (6) which produce them are determined from the measured phase changes.
Abstract:
An optical switching network employing a plurality of optical switching crosspoints is implemented by providing the first and second pluralities of strip waveguide channels passing one over the other in parallel planes separated by an intervening medium. The implementation is further characterized by including at each of the proposed switching crosspoints, that is, at the regions of closest approach of the different strip guides, beam-guide couplers such as grating-type couplers to couple the modulated optical energy from one of the first plurality of channels to one of the second plurality of channels through an intervening, supporting medium. There are provided two couplers at each optical crosspoint; and they are controllable between coupling and noncoupling conditions with respect to their respective waveguide channels.
Abstract:
An optical device includes a first waveguide extending in a first direction and a second waveguide connected to the first waveguide. The second waveguide includes a first mirror, a second mirror, and an optical waveguide layer. At least either the first waveguide or the second waveguide has one or more gratings in a part of a connection region in which the first mirror, the second mirror, and the first waveguide overlap one another when seen from an angle parallel with a direction perpendicular to a first reflecting surface of the first mirror. The one or more gratings is at a distance that is longer than at least either a thickness of the first mirror or a thickness of the second mirror in the first direction from an end of the first mirror or the second mirror that is in the connection region.
Abstract:
An eye tracker comprises a light source; a detector; and first and second waveguides. The first waveguide comprises an input coupler for coupling source light into a waveguide path and a first grating for coupling light out of the waveguide path onto an eye. The second waveguide comprises a second grating for coupling light reflected from the eye into a waveguide path and an output coupler for coupling light out of the waveguide path onto the detector. The second grating is optically configured for imaging the eye onto the detector.
Abstract:
A self-lit display panel includes a photonic integrated circuit payer including an array of waveguides and an array of out-couplers for out-coupling portions of the illuminating light through pixels of the panel. The self-lit display panel may include a transparent electronic circuitry layer backlit by the photonic integrated circuit layer; the two layers may be on a same substrate or on opposed substrates defining a cell filled with an electro-active material. The configuration allows for chief ray engineering, zonal illuminating, and separate illumination with red, green, and blue illuminating light.
Abstract:
A self-lit display panel includes a photonic integrated circuit payer including an array of waveguides and an array of out-couplers for out-coupling portions of the illuminating light through pixels of the panel. The self-lit display panel may include a transparent electronic circuitry layer backlit by the photonic integrated circuit layer; the two layers may be on a same substrate or on opposed substrates defining a cell filled with an electro-active material. The configuration allows for chief ray engineering, zonal illuminating, and separate illumination with red, green, and blue illuminating light.