Abstract:
An object of the present invention is to eliminate drawbacks of conventional multi-layered antireflection films, that is, that a lot of time is required in the formation of a transparent conductive thin film and a low-refractive index layer leading to low processing speed, the corrosion resistance of the transparent conductive thin film is unsatisfactory, and the reflectance over the whole visible light region is not constant. This object can be attained by adopting a structure comprising: a transparent layer 3, with a pencil hardness of H or more, formed of a cured product of an ionizing radiation-curable resin composition; provided on one side of the transparent layer 3, a concave-convex portion 2 comprising innumerable fine concaves and convexes provided at a pitch of not more than the wavelength of light; a transparent substrate film 1 optionally provided on the transparent layer 3 on its side remote from the concave-convex portion 2; and a cover layer, having a lower refractive index than the transparent layer, preferably provided on the fine concaves and convexes.
Abstract:
A polarizing plate having a first light transparent base material, and a polarizer and an optical laminate provided in that order on the first light transparent base material The first light transparent base material is a nonstretched base material, the optical laminate includes a second light transparent base material which is a stretched base material, and the optical laminate includes one or at least two optical property layers provided on the second light transparent base material The interface of the second light transparent base material and the optical property layer has been rendered absent by bringing the second light transparent base material and the optical property layer into contact with each other through an interface preventive adhesive layer.
Abstract:
A display element containing: (a) a first electrode which is transparent and is controlled by a driver element; (b) a second electrode; and (c) a solid polymer electrolyte layer containing a colorant and metal ions, the solid polymer electrolyte layer being provided between the first electrode and the second electrode, wherein the first electrode has an anti-reflecting layer on a side opposite to the solid polymer electrolyte layer.
Abstract:
An object of the present invention is to eliminate drawbacks of conventional multi-layered antireflection films, that is, that a lot of time is required in the formation of a transparent conductive thin film and a low-refractive index layer leading to low processing speed, the corrosion resistance of the transparent conductive thin film is unsatisfactory, and the reflectance over the whole visible light region is not constant. This object can be attained by adopting a structure comprising: a transparent layer 3, with a pencil hardness of H or more, formed of a cured product of an ionizing radiation-curable resin composition; provided on one side of the transparent layer 3, a concave-convex portion 2 comprising innumerable fine concaves and convexes provided at a pitch of not more than the wavelength of light; a transparent substrate film 1 optionally provided on the transparent layer 3 on its side remote from the concave-convex portion 2; and a cover layer, having a lower refractive index than the transparent layer, preferably provided on the fine concaves and convexes.
Abstract:
A reflection preventing layered product is provided by laminating a high refractive index layer and a low refractive index layer, which has a refractive index lower than that of the high refractive index layer, in that order on a transparent plastic film, directly or through another layer. The low refractive index layer has a surface resistance of 1.0×1010 ohm/square inch or less, a total light remittance of 94% or more, and a refractive index of 1.25-1.37. An optical member provided with the reflection preventing layered product is also provided. This optical member is preferably a polarizing plate with reflection preventing function used for a liquid crystal display. The reflection preventing layered product excels in transparency, mechanical strength, antistaticity, and reflection preventing characteristics.
Abstract:
A polarized light source device comprises a light source, a reflector, a transparent substrate, an antireflection layer, and a plurality of metal grid wires. The reflector surrounds the light source for reflecting the light, and has an opening for emitting the light. The transparent substrate is disposed at the opening. The antireflection layer is disposed on the transparent substrate. The metal grid wires are disposed on the antireflection layer for transmitting the light with a predetermined polarization therethrough.
Abstract:
The present invention provides a coating material for forming a coating layer that can achieve excellent adhesion to a transparent film. The coating material is prepared so that it contains a thermosetting resin, an inorganic filler, and a mixed solvent containing cyclohexanone. The content of the thermosetting resin is in the range from 5 to 20 wt % with respect to the total amount of the thermosetting resin and the inorganic filler, and the content of the cyclohexanone is in the range from 25 to 35 wt % with respect to the entire mixed solvent. By coating a surface of a transparent film with this coating material and then heat-treating the resultant coating, a coating layer with excellent adhesion can be formed on transparent film. The thus-obtained laminate of the transparent film and the coating layer can be used as an antireflection film.
Abstract:
A method for reducing fringe effect of a liquid crystal on silicon (LCOS) display panel is disclosed. The method includes the steps of providing a semiconductor substrate having a plurality of first electrodes and a second electrode disposed between two of the first electrodes, forming a patterned first photoresist layer on the second electrode, conformally forming a passivation layer on the first electrodes and a part of the semiconductor substrate, removing the first photoresist layer, forming a patterned second photoresist layer on the passivation layer, and forming an anti-reflection coating (ARC) layer on the second electrode.
Abstract:
A liquid crystal display (LCD) exhibiting enhanced optical viewing performance. In a preferred embodiment, the LCD comprises a liquid crystal display panel, the liquid crystal display panel comprising a pair of transparent substrates, liquid crystal material sandwiched between the transparent substrates and transparent electrodes positioned between the liquid crystal material and the transparent substrates. The LCD also comprises a rear polarizer assembly comprising a compensation film, a polarizer mounted on the rear surface of the compensation film, and a first index-matched, pressure sensitive adhesive (PSA) mounted on the front surface of the compensation film, the PSA being adhered to the rear surface of the LCD panel. The LCD also comprises a front polarizer assembly, the front polarizer assembly comprising a front polarizer, a compensation film mounted on the rear surface of the front polarizer and an index-matched PSA mounted on the front surface of the front polarizer. The front polarizer is crossed relative to the rear polarizer. The front polarizer assembly may be adhered to the front of the LCD panel with a second index-matched, optical bonding material or may be spaced therefrom by an air gap. A transparent cover is mounted on the second index-matched PSA. The transparent cover is preferably a plastic plate. The plastic plate may be textured to reduce glare or may have an anti-reflection coating or an anti-reflection film applied to the front surface thereof. Instead of a plastic plate, the transparent cover may be a glass plate or a touch panel.
Abstract:
A antireflection laminate having a first layer formed on the outermost side and a second layer formed under the first layer. The second layer contains a needle-like antimony-containing tin oxide and may be a cured product prepared by curing an organic solvent type curable composition containing the needle-like antimony-containing tin oxide; a reaction product of a hydroxyl group-containing polyfunctional (meth)acrylate and a diisocyanate; a polyfunctional (meth)acrylate; and photoinitiator.