Abstract:
An electrical overstress responsive composite is formed on an electrically insulative substrate, has a pair of electrodes associated with the substrate and defining a gap between the electrodes and over the interposed portion of the substrate, a pattern of closely spaced electrically conductive elements span said gap and are affixed to said substrate, and a dielectric resin overlies said conductive elements and also spans said gap. The dielectric resin may include conductive and/or semiconductive fine particles. The composite presents a high resistance to a low voltage applied across said electrodes and a low resistance to a high voltage applied across said electrodes.
Abstract:
Various aspects provide for incorporating a VSDM into a substrate to create an ESD-protected substrate. In some cases, a VSDM is incorporated in a manner that results in the ESD-protected substrate meeting one or more specifications (e.g., thickness, planarity, and the like) for various subsequent processes or applications. Various aspects provide for designing a substrate (e.g., a PCB) incorporating a VSDM, and adjusting one or more aspects of the substrate to design a balanced, ESD-protected substrate. Certain embodiments include molding a substrate having a VSDM layer into a first shape.
Abstract:
Various disclosed aspects provide for protecting components (e.g., integrated circuits) from spurious electrical overvoltage events, such as electrostatic discharge. Embedded components with voltage switchable dielectric materials may protect circuits against electrostatic discharge.
Abstract:
A composition of voltage switchable dielectric (VSD) material that comprises a concentration of core shelled particles that individually comprise a conductor core and a conductor shell, so as to form a conductor-on-conductor core shell particle constituent for the VSD material.
Abstract:
An electrical device that includes a first electrode and a second electrode that are separated from one another so as to form a gap structure. A layer of protective material spans the gap structure to contact the first electrode and the second electrode. A dimension of the gap structure, corresponding to a separation distance between the first electrode and the second electrode, is varied and includes a minimum separation distance that coincides with a critical path of the layer of protective material between the first electrode and the second electrode.
Abstract:
A method for designing a printed circuit board to meet a specification is described. A first voltage switchable dielectric material is placed in apposition with a first copper foil. A second voltage switchable dielectric material is placed in apposition with a second copper foil. An arcuate portion of the first copper foil is placed in apposition with a first side of an aluminum member, an adhesive substance being situated between the first copper foil and the first side of the aluminum member. An arcuate portion of the second copper foil in is placed apposition with a second side of the aluminum member, an adhesive substance being situated between the second copper foil and the second side of the aluminum member.
Abstract:
A substrate device includes an embedded layer of VSD material that overlays a conductive element or layer to provide a ground. An electrode, connected to circuit elements that are to be protected, extends into the thickness of the substrate to make contact with the VSD layer. When the circuit elements are operated under normal voltages, the VSD layer is dielectric and not connected to ground. When a transient electrical event occurs on the circuit elements, the VSD layer switches instantly to a conductive state, so that the first electrode is connected to ground.
Abstract:
A voltage switchable dielectric material comprising a concentration of multi-component particles that are individually formed by a mechanical or mechanochemical bonding process that bonds a semiconductive or conductive-type host particle with multiple insulative, conductive, or semi-conductive guest particles.
Abstract:
A wireless communication device, such as an RFID tag, is provided material that is dielectric, unless a voltage is applied that exceeds the materials characteristic voltage level. In the presence of such voltage, the material becomes conductive. The integration of such material into the device may be mechanical and/or electrical.
Abstract:
A substrate device includes an embedded layer of VSD material that overlays a conductive element or layer to provide a ground. An electrode, connected to circuit elements that are to be protected, extends into the thickness of the substrate to make contact with the VSD layer. When the circuit elements are operated under normal voltages, the VSD layer is dielectric and not connected to ground. When a transient electrical event occurs on the circuit elements, the VSD layer switches instantly to a conductive state, so that the first electrode is connected to ground.