Abstract:
The invention provides for an ultra hard or hard composite material comprising a primary ultra hard or hard particulate material and at least one secondary ultra hard or hard particulate material dispersed in a matrix material. The primary ultra hard or hard particulate material has a thermal expansion coefficient lower than that of the matrix material and the at least one secondary ultra hard or hard particulate material has a thermal expansion coefficient greater than that of the matrix material.
Abstract:
The present disclosure provides a silicon carbide (SiC) bonded diamond compact having less than about 2 weight % unreacted Si and less than about 1 weight % graphite, as well as processes for making the same.
Abstract:
A method for making a polycrystalline diamond construction is disclosed, which includes the steps of treating a polycrystalline diamond body having a plurality of bonded together diamond crystals and a solvent catalyst material to remove the solvent catalyst material therefrom, wherein the solvent catalyst material is disposed within interstitial regions between the bonded together diamond crystals, replacing the removed solvent catalyst material with a replacement material, and treating the body having the replacement material to remove substantially all of the replacement material from a first region of the body extending a depth from a body surface, and allowing the remaining amount of the replacement material to reside in a second region of the body that is remote from the surface.
Abstract:
Embodiments of the invention relate to polycrystalline diamond (“PCD”) exhibiting enhanced diamond-to-diamond bonding. In an embodiment, PCD includes a plurality of diamond grains defining a plurality of interstitial regions. A metal-solvent catalyst occupies at least a portion of the plurality of interstitial regions. The plurality of diamond grains and the metal-solvent catalyst collectively exhibit a coercivity of about 115 Oersteads or more and a specific magnetic saturation of about 15 Gauss·cm3/grams or less. Other embodiments are directed to polycrystalline diamond compacts (“PDCs”) employing such PCD, methods of forming PCD and PDCs, and various applications for such PCD and PDCs in rotary drill bits, bearing apparatuses, and wire-drawing dies.
Abstract:
Polycrystalline compacts include non-catalytic nanoparticles in interstitial spaces between interbonded grains of hard material in a polycrystalline hard material. Cutting elements and earth-boring tools include such polycrystalline compacts. Methods of forming polycrystalline compacts include sintering hard particles and non-catalytic nanoparticles to form a polycrystalline material. Methods of forming cutting elements include infiltrating interstitial spaces between interbonded grains of hard material in a polycrystalline material with a plurality of non-catalytic nanoparticles.
Abstract:
The invention relates to carbon chemistry and is embodied in the form of a diamond-carbon material, in which carbon is contained in the form a diamond cubic modification and in a roentgen-amorphous phase at a ratio of (40-80):(60-20) in terms of a carbon mass, respectively, wherein the inventive material comprises 89.1-95.2 mass % carbon, 1.2-5.0 mass % nitrogen, 0.1-4.7 mass % oxygen and 0.1-1.5 mass % fire-resisting impurities. The inventive method for producing said material consisting in detonating, in a closed space of a carbon-inert gas medium, a carbon-containing oxygen-deficient explosive material, which is placed in a condensed phase envelop containing a reducing agent at a quantitative ratio between said reducing agent mass in the condensed phase and the mass of the used carbon-containing explosive material equal to or greater than 0.01:1. A method for processing the samples of diamond-carbon material produced by means of a detonation synthesis for examining the elemental composition thereof is also disclosed.
Abstract:
The present disclosure relates to cutting elements incorporating polycrystalline diamond bodies used for subterranean drilling applications, and more particularly, to polycrystalline diamond bodies having a high diamond content which are configured to provide improved properties of thermal stability and wear resistance, while maintaining a desired degree of impact resistance, when compared to prior polycrystalline diamond bodies. In various embodiments disclosed herein, a cutting element with high diamond content includes a modified PCD structure and/or a modified interface (between the PCD body and a substrate), to provide superior performance.
Abstract:
The present invention relates to polycrystalline ultra hard material cutting elements, and more particularly to a method of forming a polycrystalline ultra hard material cutting element with a thicker ultra hard layer than cutting elements formed by prior art methods. In an exemplary embodiment, such a method includes pre-sintering the ultra hard material powder to form an ultra hard material layer that is partially or fully densified prior to HPHT sintering, so that the ultra hard layer is pre-shrunk. This pre-sintering in an exemplary embodiment is achieved by means of a spark plasma process, or in another exemplary embodiment by a microwave sintering process.
Abstract:
A single crystal diamond grown by vapor phase synthesis, wherein when one main surface is irradiated with a linearly polarized light considered to be the synthesis of two mutually perpendicular linearly polarized light beams, the phase difference between the two mutually perpendicular linearly polarized light beams exiting another main surface on the opposite side is, at a maximum, not more than 50 nm per 100 μm of crystal thickness over the entire crystal. This single crystal diamond is of a large size and high quality unattainable up to now, and has characteristics that are extremely desirable in semiconductor device substrates and are applied to optical components of which low strain is required.
Abstract:
Embodiments relate to methods of fabricating PCD materials by subjecting a mixture that exhibits a broad diamond particle size distribution to a HPHT process, PCD materials so-formed, and PDCs including a polycrystalline diamond table comprising such PCD materials. In an embodiment, a method includes subjecting a mixture to heat and pressure sufficient to form a PCD material. The mixture comprises a plurality of diamond particles exhibiting a diamond particle size distribution characterized, in part, by a parameter θ that is less than about 1.0, where θ = x 6 · σ , x is the average particle size of the diamond particle size distribution, and σ is the standard deviation of the diamond particle size distribution. In an embodiment, the diamond particle size distribution can be generally modeled by the following equation: CPFT 100 = D n - D S n D L n - D S n , wherein CPFT is the cumulative percent finer than, D is diamond grain size, DL is the largest-sized diamond grain, DS is the smallest-sized diamond grain, and n is a distribution modulus.
Abstract translation:实施方案涉及通过使表现出宽金刚石粒度分布的混合物经历HPHT方法,所形成的PCD材料以及包括包含这种PCD材料的多晶金刚石台的PDC来制造PCD材料的方法。 在一个实施方案中,一种方法包括使混合物经受足以形成PCD材料的热和压力。 该混合物包括多个金刚石颗粒,其具有金刚石颗粒尺寸分布,其部分表征为参数θ小于约1.0,其中θ= x 6。 sigma,x是金刚石粒度分布的平均粒度,σ是金刚石粒度分布的标准偏差。 在一个实施方案中,金刚石粒度分布通常可以通过以下等式建模:CPFT 100 = D n -DS n DL n-DS n,其中CPFT是比D更精细的累积百分比,D是金刚石晶粒尺寸,DL是 最大尺寸的金刚石颗粒,DS是最小尺寸的金刚石颗粒,n是分布模量。