Abstract:
Embodiments of the invention relate to a nozzle assembly for electrostatic deposition comprising a single point nozzle, the single point nozzle being conically shaped and including an apex and a circular base, the circular base including a smaller diameter cylindrical protrusion including a counter bore which connects to a passage leading to the apex; and a nozzle body, in contact with the single point nozzle and including a first through bore, a larger second through bore and a cross drilled port into the first through bore; and a cylindrical electrode, at least partially inserted within the first through bore of the nozzle body and in contact with the counter bore of the single point nozzle, the electrode including a bore mating aligned with the cross drilled port of the nozzle body, and inlets positioned at either end.
Abstract:
An electrostatic spray system, comprising a hand held device having an inlet and an outlet. The hand held device includes a charging device for producing a high voltage charging field and a spray nozzle having an outlet, the outlet being disposed within the charging field. The system further includes an air movement system disposed within the hand held device, the air movement system configured to produce an airflow around the spray nozzle and through the high voltage charging field to create a directionally controllable electrostatic charged mist existing the hand held device at low velocities.
Abstract:
A rotary atomizing head 1, which has an inner peripheral surface 2 whose diameter increases from a bottom 21 of the inner peripheral surface toward a tip thereof, and atomizes and releases paint by applying a centrifugal force generated by rotation to the paint supplied to the bottom of the inner peripheral surface, includes a paint supply nozzle 11 for supplying the paint and a cleaning solution to the bottom of the inner peripheral surface, and the paint supply nozzle has a nozzle hole 10a for discharging the paint and the cleaning solution from a rotation center O portion of the rotary atomizing head in a direction substantially perpendicular to a rotation axis of the rotary atomizing head. The rotary atomizing head 1 also includes a dam portion 4 that is provided in an intermediate portion between the bottom and the tip of the inner peripheral surface and dams the paint and the cleaning solution supplied from the paint supply nozzle to the bottom and flow along the inner peripheral surface toward the tip.
Abstract:
A robotic painting system includes an applicator, a first paint metering device in fluid communication with the applicator, a second paint metering device in fluid communication with the paint applicator, and a paint supply in fluid communication with each the paint metering devices to fill at least one of the paint metering devices with a desired amount of paint, wherein each of the paint metering devices is electrostatically isolated from the paint supply, and wherein a color change time and a paint waste are minimized and a cleaning operation of the system is optimized.
Abstract:
A system, including an electrostatic spray system, including an electrostatic tool configured to spray a material with an electrostatic charge, and a controller and wherein the controller is configured to change modes of the electrostatic tool, and wherein the modes are different processes that change the rate of material discharge, how much electrical charge is applied to the material, and when electrical charge is applied to the material.
Abstract:
An electrostatic atomization device (A) for increasing hydrophilicity of collected matter (15) that has low hydrophilicity and is attached to a surface of a processing subject (1). The device includes an atomization electrode (6), which generates electrostatically charged atomized water droplets to increase the hydrophilicity, a water supply member (8), which supplies water to the atomization electrode (6), and a voltage application member (9), which applies voltage to the water supplied to the atomization electrode (6).
Abstract:
A solventless system for fabricating electrodes includes a mechanism for feeding a substrate through the system, a first application region comprised of a first device for applying a first layer to the substrate, wherein the first layer is comprised of an active material mixture and a binder, and the binder includes at least one of a thermoplastic material and a thermoset material, and the system includes a first heater positioned to heat the first layer.
Abstract:
Phosphor films, methods of forming the phosphor films, and methods of coating a phosphor layer on light-emitting chips are disclosed. The phosphor film includes: a base film; a phosphor layer that is formed on the base film and comprises an incompletely cured resin material and phosphor particles mixed with the incompletely cured resin material; and a cover film that is formed on the phosphor layer and protects the phosphor layer.
Abstract:
A sachet (1) having walls of flexible material is disclosed. The walls are joined so as to form an impermeable seal, thereby defining a cavity within the sachet (1). A conduit (2) passing through the seal and having inner and outer ends is disposed with the inner end within the cavity and the outer end outside the sachet (1) such that the cavity is in fluid communication, via the conduit, with the outside of the sachet. The cavity contains a volume of liquid (8) in use, and the conduit (2) is adapted to prevent the liquid (8) flowing from the cavity without the application of an additional stimulus, irrespective of the orientation of the sachet (1).
Abstract:
A system for in-process orientation of particles used in direct-write inks for fabricating a component may include a device for polarizing direct-write particles in an aerosol. An outlet may direct the aerosol including the polarized direct-write particles on a substrate to form a component. An apparatus may cause the polarized direct-write particles to be aligned in a selected orientation to form the component with predetermined characteristics when deposited on the substrate.