Abstract:
The surface form of a semiconductor thin film such as a polysilicon film 13 formed on a semiconductor substrate 11 is measured through spectro-ellipsometry or measured by performing an IPA quantitative analysis through GC. Mass (gas chromatography) after exposing the semiconductor thin film to IPA (isopropyl alcohol) vapor and drying the semiconductor thin film. through either of these methods the surface form of the polysilicon film easily and quickly measured.
Abstract:
An ellipsometer, and a method of ellipsometry, for analyzing a sample using a broad range of wavelengths, includes a light source for generating a beam of polychromatic light having a range of wavelengths of light for interacting with the sample. A polarizer polarizes the light beam before the light beam interacts with the sample. A rotating compensator induces phase retardations of a polarization state of the light beam wherein the range of wavelengths and the compensator are selected such that at least a first phase retardation value is induced that is within a primary range of effective retardations of substantially 135null to 225null, and at least a second phase retardation value is induced that is outside of the primary range. An analyzer interacts with the light beam after the light beam interacts with the sample. A detector measures the intensity of light after interacting with the analyzer as a function of compensator angle and of wavelength, preferably at all wavelengths simultaneously. A processor determines the polarization state of the beam as it impinges the analyzer from the light intensities measured by the detector.
Abstract:
The invention relates to an apparatus and a method of determination of at least one optical parameter of an optical signal, comprising the steps of: providing a beam of the optical signal having a diameter, manipulating the beam, the manipulation having polarization properties, the properties being dependent of the position in the beam laterally with respect to a direction of propagation of the beam during manipulation, detecting in intensities at least three parts of the beam in their dependence of the position in the beam laterally with respect to a direction of propagation of the beam during detection.
Abstract:
The present invention relates to the use of polarized light to measure properties of tissue. More particularly, polarized light can be used to detect dysplasia in tissue as the polarization of back-scattered light from such tissues is preserved while the contribution of diffusely scattered light from underlying tissues can be removed. A fiber optic system for delivery and collection of light can be used to measure tissues within the human body.
Abstract:
A photocoupler 3 splits the light from a low-coherence light source 1 into measuring light DL and local oscillator light KL. A photocoupler 5 receives measuring light DL arid is input to an optical circuit 7 to be measured. The photocoupler 5 splits the reflected light RL. A polarization controller 9 controls the state of polarization of the reflected light RL as split by the photocoupler 5. A photocoupler 13 allows local oscillator light KL to be incident on a reflector mirror 16 and splits local oscillator light KL. A photocoupler 11 combines the reflected light RL as controlled in the state of polarization by the polarization controller 9, with the local oscillator light KL.
Abstract:
An ellipsometric metrology apparatus for a sample contained in a chamber. A light source outside the chamber produces the illuminating beam. A polarizing device outside the chamber polarizes the illuminating beam. A window of selected dimensions and features is disposed in a plane substantially parallel to the sample surface and at least partly closes the chamber. A first directing device directs the polarized illuminating beam on to an area of the sample along a first optical path extending from the polarizing device to the area of the sample through the window. The first optical path forms a predetermined oblique angle of incidence relative to the sample surface. A polarization analyzing device is outside the chamber, a second directing device directs the reflected beam resulting from the illumination of the sample by the illuminating beam on to the analyzing device along a second optical path extending from the sample towards the analyzing device through the window. The reflected beam is symmetrical to the illuminating beam relative to a normal to the sample surface. A detecting device detects the output beam transmitted by the analyzing device in order to supply an output signal processing means processes the output signal in order to determine the changes in stage of polarization in phase and in amplitude caused by the reflection on the area of the sample.
Abstract:
Systems and techniques for integrating an optical coherent gradient sensing (CGS) module and another optical sensing module to simultaneously measure the curvature and another property of a specularly reflective surface.
Abstract:
A polarized sample beam of broadband radiation is focused onto the surface of a sample and the radiation modified by the sample is collected by means of a mirror system in different planes of incidence. The sample beam focused to the sample has a multitude of polarization states. The modified radiation is analyzed with respect to a polarization plane to provide a polarimetric spectrum. Thickness and refractive information may then be derived from the spectrum. Preferably the polarization of the sample beam is altered only by the focusing and the sample, and the analyzing is done with respect to a fixed polarization plane. In the preferred embodiment, the focusing of the sample beam and the collection of the modified radiation are repeated employing two different apertures to detect the presence or absence of a birefringence axis in the sample. In another preferred embodiment, the above-described technique may be combined with ellipsometry for determining the thicknesses and refractive indices of thin films.
Abstract:
An optical measurement system for evaluating a reference sample that has at least a partially known composition. The optical measurement system includes a reference ellipsometer and at least one non-contact optical measurement device. The reference ellipsometer includes a light generator, an analyzer and a detector. The light generator generates a beam of quasi-monochromatic light having a known wavelength and a known polarization for interacting with the reference sample. The beam is directed at a non-normal angle of incidence relative to the reference sample to interact with the reference sample. The analyzer creates interference between the S and P polarized components in the light beam after the light beam has interacted with reference sample. The detector measures the intensity of the light beam after it has passed through the analyzer. A processor determines the polarization state of the light beam entering the analyzer from the intensity measured by the detector, and determines an optical property of the reference sample based upon the determined polarization state, the known wavelength of light from the light generator and the composition of the reference sample. The processor also operates the optical measurement device to measure an optical parameter of the reference sample. The processor calibrates the optical measurement device by comparing the measured optical parameter from the optical measurement device to the determined optical property from the reference ellipsometer.
Abstract:
An optical measurement system is disclosed for evaluating samples with multi-layer thin film stacks. The optical measurement system includes a reference ellipsometer and one or more non-contact optical measurement devices. The reference ellipsometer is used to calibrate the other optical measurement devices. Once calibration is completed, the system can be used to analyze multi-layer thin film stacks. In particular, the reference ellipsometer provides a measurement which can be used to determine the total optical thickness of the stack. Using that information coupled with the measurements made by the other optical measurement devices, more accurate information about individual layers can be obtained.