Abstract:
The present invention utilizes a plurality of spectroscopic systems and methods to measure characteristics of tissue useful in the diagnosis of disease. In a preferred embodiment, a combination of fluorescence, reflectance and light scattered spectra can be measured and processed to provide biochemical, architectural and morphological state of tissue. The methods and systems can be used particularly in the early detection of carcinoma within tissue in vivo and in vitro.
Abstract:
The system and method of the present invention relates to using spectroscopy, for example, Raman spectroscopic methods for diagnosis of tissue conditions such as vascular disease or cancer. In accordance with a preferred embodiment of the present invention, a system for measuring tissue includes a fiber optic probe having a proximal end, a distal end, and a diameter of 2 mm or less. This small diameter allows the system to be used for the diagnosis of coronary artery disease or other small lumens or soft tissue with minimal trauma. A delivery optical fiber is included in the probe coupled at the proximal end to a light source. A filter for the delivery fibers is included at the distal end. The system includes a collection optical fiber (or fibers) in the probe that collects Raman scattered radiation from tissue, the collection optical fiber is coupled at the proximal end to a detector. A second filter is disposed at the distal end of the collection fibers. An optical lens system is disposed at the distal end of the probe including a delivery waveguide coupled to the delivery fiber, a collection waveguide coupled to the collection fiber and a lens.
Abstract:
The present invention relates to systems and methods of field-based light scattering spectroscopy. These systems and methods provide for the diagnosis of tissue by measuring the size and distribution of cellular characteristics. Field based measurements provide phase information resulting from the interaction of scatterers within the material and the incident wavefront. These measurements can be used to provide three dimensional images of tissue.
Abstract:
Systems and methods for spectroscopic diagnosis and treatment are employed which utilize molecular spectroscopy to accurately diagnose the condition of tissue. Infrared Raman spectroscopy and infrared attenuated total reflectance measurements are performed utilizing a laser radiation source and a fourier transform spectrometer. Information acquired and analyzed in accordance with the invention provides accurate details of biochemical composition and pathologic condition.
Abstract:
The system and method of the present invention relates to using spectroscopy, for example, Raman spectroscopic methods for diagnosis of tissue conditions such as vascular disease or cancer. In accordance with a preferred embodiment of the present invention, a system for measuring tissue includes a fiber optic probe having a proximal end, a distal end, and a diameter of 2 mm or less. This small diameter allows the system to be used for the diagnosis of coronary artery disease or other small lumens or soft tissue with minimal trauma. A delivery optical fiber is included in the probe coupled at the proximal end to a light source. A filter for the delivery fibers is included at the distal end. The system includes a collection optical fiber (or fibers) in the probe that collects Raman scattered radiation from tissue, the collection optical fiber is coupled at the proximal end to a detector. A second filter is disposed at the distal end of the collection fibers. An optical lens system is disposed at the distal end of the probe including a delivery waveguide coupled to the delivery fiber, a collection waveguide coupled to the collection fiber and a lens.
Abstract:
The present invention relates to a fluorescence endoscope imaging system. The system uses first and second light sources to provide fluorescence and reflectance images of tissue being examined. An imaging device mounted at the distal end of the device is used to collect both images.
Abstract:
The methods of the present invention are directed at an accurate phase-based technique for measuring arbitrarily long optical distances with sub-nanometer precision. A preferred embodiment of the present invention method employs a interferometer, for example, a Michelson interferometer, with a pair of harmonically related light sources, one continuous wave (CW) and a second source having low coherence. By slightly adjusting the center wavelength of the low coherence source between scans of the target sample, the phase relationship between the heterodyne signals of the CW and low coherence light is used to measure the separation between reflecting interfaces with sub-nanometer precision. As the preferred embodiment of this method is completely free of 2null ambiguity, an issue that plagues most phase-based techniques, it can be used to measure arbitrarily long optical distances without loss of precision.
Abstract:
Photon migration methods are employed to image absorbing objects embedded in a turbid medium such as tissue. For improved resolution, early arriving photons are detected to provide data with image reconstruction based on optical computed tomography (CT). The CT method is generalized to take into account the distributions of photon paths. A point spread function (PSF) is expressed in terms of the Green's function for the transport equation. This PSF provides weighting functions for use in a generalized series expansion method. Measurements of turbid medium with scattering and absorption properties included coaxial transmission scans collected in two projections. Blurring associated with multiple scattering was removed and high-resolution images can be obtained.
Abstract:
The present invention relates to the use of polarized light to measure properties of tissue. More particularly, polarized light can be used to detect dysplasia in tissue as the polarization of back-scattered light from such tissues is preserved while the contribution of diffusely scattered light from underlying tissues can be removed. A fiber optic system for delivery and collection of light can be used to measure tissues within the human body.
Abstract:
The present invention utilizes a plurality of spectroscopic techniques to measure characteristics of tissue useful in the diagnosis of disease. Fluorescence, reflectance and light scattered spectra can be measured and processed to determine the size, distribution and/or composition of tissue. The methods and systems can be used particularly in the early detection of carcinoma within tissue in vivo and in vitro.