Abstract:
A detection system includes a multi-focus radiation source configured to generate X-ray radiation and a primary collimator defining a first row of apertures and a second row of apertures. The first row of apertures forms first X-ray beams within a first plane from the X-ray radiation, and the second row of apertures forms second X-ray beams within a second plane from the X-ray radiation. The first plane is different than the second plane. The detection system further includes a scatter detector including a first row of scatter detector elements and a second row of scatter detector elements. The first row of scatter detector elements is configured to detect scattered radiation from the first X-ray beams, and the second row of scatter detector elements is configured to detect scattered radiation from the second X-ray beams.
Abstract:
The invention relates to a method and to an apparatus for analyzing nanoparticles, wherein the nanoparticles are first fractionated as a function of their particle size and subsequently analyzed, wherein small angle X-ray scattering is used for the analysis of the nanoparticles, and to a corresponding apparatus for carrying out the method according to the invention. The analysis by means of small angle X-ray scattering comprises the focussing of X-radiation onto the nanoparticles to be analyzed by means of a slit collimator and the analysis of the nanoparticles using a detector-to-sample distance of less than 50 cm.
Abstract:
This invention provides a scanning system for scanning an object in a scanning zone. The scanning system includes both a radiation source arranged to irradiate the object with radiation having a peak energy of at least 900 keV and a scatter detector arranged to detect radiation scattered from the object wherein the radiation source is arranged to irradiate the object over a plurality of regions to be scanned within a single irradiation event. The scatter detector includes a plurality of detection elements, each detection element being arranged to detect scattered radiation from a predefined part of the scanning zone and a signal processor arranged to calculate scatter intensity across the plurality of detector elements.
Abstract:
Scattered radiation is estimated by using a reduced image generated from a projection image, and the scattered radiation image of the projection image is acquired by enlargement processing. The scattered radiation correction of the projection image is executed by subtracting the obtained scattered radiation image from the projection image. In addition, when a primary X-ray image and a scattered radiation image in each projection direction are to be obtained by sequential approximation calculation, a primary X-ray image which has already been identified in an adjacent projection direction is used as a first estimated value (initially set value) in next sequential calculation.
Abstract:
Provided is a method of bright-field imaging using x-rays in a sample to reveal lattice defects as well as structural inhomogeneities, the method comprising: (a) disposing a sample on a holder in the Laue transmission geometry and setting the sample to a single reflection in the Bragg diffraction; (b) projecting a beam of monochromatic x-rays on the sample; and (c) obtaining transmitted radiographic images and reversed diffracted images of the projected beam of monochromatic x-rays by the sample, respectively.
Abstract:
An X-ray analysis apparatus including: a radiation source configured to irradiate an irradiation point on a sample with radiation; an X-ray detector configured to detect a characteristic X-ray emitted from the sample, and output a signal including energy information about the characteristic X-ray; an analyzer configured to analyze the signal; a sample stage configured to allow placement of the sample thereon; a shifting mechanism being capable of relatively shifting the sample on the sample stage and the radiation source and the X-ray detector with respect to each other; a height measuring mechanism being capable of measuring the height of the irradiation point on the sample; and a controller configured to control the shifting mechanism on the basis of the measured height of the irradiation point on the sample and adjust the distance of the sample with respect to the radiation source and the X-ray detector is used.
Abstract:
Systems and methods for scanning an object in an inspection space are disclosed. The systems and methods generally incorporate spatially separated and sequenced Compton x-ray backscatter imaging techniques in a plurality of perspective planes. Such processes as time-gating detectors, weighting scintillation detections, and preferentially accepting signals that originate from a point that is substantially orthogonal to a radiation detector and at least partially shielding out signals that do not originate from a point substantially orthogonal to the detector may be used to enhance the data acquisition process.
Abstract:
The present invention relates to the field of x-ray imaging. More particularly, embodiments of the invention relate to methods, systems, and apparatus for imaging, which can be used in a wide range of applications, including medical imaging, security screening, and industrial non-destructive testing to name a few. Specifically provided as embodiments of the invention are systems for x-ray imaging comprising: a) a first collimator-and-detector assembly having a first operable configuration to provide at least one first dataset comprising primary x-ray signals as a majority component of its data capable of being presented as a first image of an object subjected to x-ray imaging; b) a second collimator-and-detector assembly having a second operable configuration or wherein the first collimator-and-detector assembly is adjustable to a second configuration to provide at least one second dataset comprising primary and dark-field x-ray signals as a majority component of its data capable of being presented as a second image of the object; and c) a computer operably coupled with the collimator-and-detector assemblies comprising a computer readable medium embedded with processing means for combining the first dataset and the second dataset to extract the dark-field x-ray signals and produce a target image having higher contrast quality than the images based on the first or second dataset alone. Such systems can be configured to comprise at least two collimator-and-detector assemblies or configurations differing with respect to collimator height, collimator aperture, imaging geometry, or distance between an object subjected to the imaging and the collimator-and-detector assembly.
Abstract:
For scattered radiation correction in dual X-ray absorptiometry it is proposed to use the additional information supplied by the attenuation images in different energy ranges in a correction image area with homogeneous attenuation coefficients in order to determine the respective scattered radiation fraction. Toward that end, the inverse of the primary radiation function is considered and a search conducted for that scatter-to-primary ratio which leads to consistent mass per unit areas for the attenuation images recorded in different energy ranges.
Abstract:
A multi-focus x-ray source (MFXS) for a multiple inverse fan beam x-ray diffraction imaging (MIFB XDI) system. The MFXS includes a plurality of focus points (N) defined along a length of the MFXS collinear with the y-axis. The MFXS is configured to generate the plurality of primary beams, and at least M coherent x-ray scatter detectors are configured to detect coherent scatter rays from the primary beams as the primary beams propagate through a section of the object positioned within the examination area when a spacing P between adjacent coherent x-ray scatter detectors satisfies the equation: P = W s · V M · U , where Ws is a lateral extent of the plurality of focus points, U is a distance from the y-axis to a top surface of the examination area, and V is a distance from the top surface to the line at the coordinate X=L.