Abstract:
A vacuum tube for amplifier circuit includes: a light incidence window that transmits signal light; a photoelectric conversion unit that converts the signal light transmitted through the light incidence window into photoelectrons; an output unit that has an anode, on which the photoelectrons are incident, and outputs a signal corresponding to the incident photoelectrons; and a grid electrode that is disposed in a path of the photoelectrons from the photoelectric conversion unit to the anode and controls the amount of photoelectrons incident on the anode.
Abstract:
A vacuum channel field effect transistor includes a first insulator on a p-type semiconductor substrate, a gate electrode on the first insulator, a second insulator on the gate electrode, a drain electrode on the second insulator, and an n+ impurity diffusion layer in the surface of the p-type semiconductor substrate, the n+ impurity diffusion layer being in contact with a side wall including side faces of the first insulator, the gate electrode, and the second insulator. Application of predetermined voltages to the n+ impurity diffusion layer, the gate electrode, and the drain electrode causes charge carriers in the n+ impurity diffusion layer to travel through a vacuum or air faced by the side wall to the drain electrode, which can increase the source-drain current.
Abstract:
A vacuum tube optimization circuit can automatically ensuring that the preheating required for the thermionic effect to occur within the vacuum tubes within a vacuum tube device, has been sufficient to allow the vacuum tubes to reach their operating temperatures, before allowing signal voltage or current to be applied to their anodes, cathodes, and/or other thermionically-active components. This reduces the diffusion of component-specific surface material coatings onto the surfaces of other internal elements within the vacuum tube, functioning to extend the service life of the vacuum tubes.
Abstract:
A pipe source of UV flux has an inner pipe made of UV transmissive material and coated on its outer surface with a UV emitting phosphor. An outer pipe has a cathode array disposed on or near its inner surface, such as an array of thermionic filament cathodes mounted longitudinally or transverse to the length of the pipe, cold cathode arrays formed on the inner surface of the pipe or cold cathode arrays formed on separate substrates which are then attached to the inner surface of the outer pipe. The ends of this two-pipe assembly are hermetically sealed with flanges or end plates at either end of the pipe and evacuated to a pressure below 1×10−3 Torr. Internal spacing rings may be used to provide additional separation between the inner and out pipes. Current from the cathode arrays is accelerated by an anode voltage to strike the UV phosphors when then emit UV light flux which illuminates the inside of the pipe and the fluid material flowing through the inner pipe.
Abstract:
In one embodiment of the present invention, an electronic device includes a first emitter/collector region and a second emitter/collector region disposed in a substrate. The first emitter/collector region has a first edge/tip, and the second emitter/collector region has a second edge/tip. A gap separates the first edge/tip from the second edge/tip. The first emitter/collector region, the second emitter/collector region, and the gap form a field emission device.