Abstract:
The invention provides a power supply module and a charged particle beam device that are capable of reducing ripple noise. A high-voltage generation circuit 101 includes booster circuits CPa and CPb of two systems that are configured to be symmetrical to each other, and performs a boosting operation by using a capacitive element and a diode in the booster circuits CPa and CPb of the two systems. The high-voltage generation circuit is housed in a housing and a reference power supply voltage is applied thereto. A left electrode 102a is fixedly provided in the vicinity of one of the booster circuits CPa and CPb of the two systems in the housing, and a right electrode 102b is fixedly provided in the vicinity of the other of the booster circuits CPa and CPb of the two systems in the housing. A stray capacitance adjustment circuit 100a adjusts capacitance values of stray capacitances of the booster circuits CPa and CPb of the two systems by electrically controlling an electrical connection characteristic between the left electrode 102a and the reference power supply voltage 104 and an electrical connection characteristic between the right electrode 102b and the reference power supply voltage 104.
Abstract:
Surface field electron emitters using a carbon nanotube yarn and a method of fabricating the same are disclosed. To fabricate the carbon nanotube yarn for use in fabrication of simple and efficient carbon nanotube field electron emitters, the method performs densification of the carbon nanotube yarn during rotation of a plying unit and heat treatment of the carbon nanotube yarn that has passed through the plying unit without using organic or inorganic binders or polymer pastes. The method fabricates the carbon nanotube yarn with excellent homogeneity and reproducibility through a simple process. The carbon nanotube yarn-based surface field electron emitters can be applied to various light emitting devices.
Abstract:
An electron emission device includes a substrate, cathode and gate electrodes placed on the substrate in an insulated manner, and electron emission regions electrically connected to the cathode electrodes. Each of the cathode electrodes includes a line electrode having a groove at one lateral side surface thereof, and isolation electrodes formed on the substrate exposed through the groove such that the isolation electrodes are isolated from the line electrode. The electron emission regions are placed on the isolation electrodes and a resistance layer electrically connects the isolation electrodes to the line electrode.
Abstract:
Described herein is a resistor layer for use in field emission display devices and the like, and its method of manufacture. The resistor layer is an amorphous silicon layer doped with nitrogen and phosphorus. Nitrogen concentration in the resistor layer is preferably between about 5 and 15 atomic percent. The presence of nitrogen and phosphorus in the silicon prevents diffusion of Si atoms into metal conductive layers such as aluminum, even up to diffusion and packaging temperatures. The nitrogen and phosphorus also prevent defects from forming at the boundary between the resistor layer and metal conductor. This leads to better control over shorting and improved resistivity in the resistor.
Abstract:
Diamond microtip field emitters are used in diode and triode vacuum microelectronic devices, sensors and displays. Diamond diode and triode devices having integral anode and grid structures can be fabricated. Ultra-sharp tips are formed on the emitters in a fabrication process in which diamond is deposited into mold cavities in a two-step deposition sequence. During deposition of the diamond, the carbon graphite content is carefully controlled to enhance emission performance. The tips or the emitters are treated by post-fabrication processes to further enhance performance.
Abstract:
A field emission element in which the emitter has rectangular projections at its distal end capable of readily controlling the interval between electrodes in increments as small as sub-microns, in order to reduce the voltage at which the device starts field emission at the required level and to improve emission uniformity. An emitter (2,20), a collector (3,21) and a gate (5,22) are arranged on a substrate (1), which is formed with a recess (4) in proximity to the electrodes (2,3, 20,21) other than the gate (5). The gate (5) is provided in the recess (4).
Abstract:
The invention relates to a semiconductor cathode based on avalanche breakdown in the p-n junction. The released electrons obtain extra accelerating energy by means of an electrode provided on the device. The achieved efficiency increase makes the manufacture of such cathodes in planar silicon technology sensible. Such cathodes are applied, for example, in cathode ray tube, flat displays, pick-up tubes and electron lithography.
Abstract:
A linear beam tube is provided with a gridded electron gun in which a concave cathode surface is provided with concave channels from which electrons are emitted. The channels may be arranged as concentric annuli. In a preferred embodiment the channels extend radially outwards from the center of the cathode to minimize the effects of temperature distortion. The cathode is provided with a shadow grid and a control grid is spaced from and aligned therewith.