Abstract:
An optical interconnect system having a GRIN rod lens, the GRIN rod lens having a first end and a second end, and further having a preselected length, a preselected width and a preselected index of refraction. Means are fixedly secured to the first end of the GRIN rod lens for emitting electromagnetic radiation and means are fixedly secured to said second end of said GRIN rod lens for receiving the emitted electromagnetic radiation. The GRIN rod lens forms an image of the emitting means onto the receiving means and overcomes problems associated with misalignment. Further embodiments of this optical interconnect system are capable of use in even further applications in an environment where alignment problems are at issue
Abstract:
A confocal scanning optical microscope system wherein a dispersive optical device such as a prism separates an image from a restricted area of a specimen into a spread of images of differing wavelengths. Different parts of the spread of images are focused at respective beam-limiting apertures which are conjugate with one another, and the spectrally differing beams passing through the beam-limiting apertures pass to respective detectors.
Abstract:
A method is disclosed for mixing pairs of confocal images and different arrangements for fast generation of parallel confocal images and the combination thereof in real time. The method is used for improving contrast and resolution in confocal images. The suggested arrangements point to some possibilities for a meaningful application of the method for image mixing in parallel confocal single-beam or double-beam methods for the generation of highly resolved images in real time for a wide variety of different applications, especially also for material inspection. By combining at least two confocal images, a resolution of the fine structure of the object is achieved in the mixed image. Contrast, lateral resolution and depth resolution are improved in the mixed image of the object to be examined, which can also be a phase object. Further, the method permits the generation of very highly resolved three-dimensional digital images of optical objects to be examined.
Abstract:
An illumination device for a light microscope comprises a scanning microscope probe which is integrated in the center thereof. A scanning probe microscope comprising such illumination device is also disclosed.
Abstract:
A positional relationship of a plurality of beam spots for a multi-beam imaging apparatus is detected. The imaging apparatus including a light source, a beam splitter that divides a received beam into a plurality of beams, a deflecting system that deflects the beams to scan, and an imaging optical system that forms a plurality of scanning beam spots on a surface. According to the method, a phase filter is provided between the light source and the beam splitter. The filter is configured to divide a cross section of the beam into a plurality of areas, light fluxes passed through adjoining two areas having an optical path difference of half a wavelength. Dark lines are formed, in each beam spot, due to the phase difference of the adjoining two areas. By detecting the dark lines of respective beam spots, a positional relationship between the plurality of beam spots can be determined.
Abstract:
An electronic beam lithography tool providing dimensional stability. The tool includes three or more deflection plates above an aperture diaphragm which allows the beam to be deflected away from an aperture and along a two-dimensional locus on the aperture diaphragm which is approximately symmetrical around the aperture therein. By doing so, the aperture diaphragm is symmetrically heated by the power of the charged particle beam and the geometry of the charged particle beam device is stabilized against variance in geometry of the device to a very small tolerance.
Abstract:
An incremental position measuring system in the form of a three-grating sensor is optimized in such a way, that the degree of modulation (M) of the incremental scanning device, as well as the intensity (I) of a reference marker signal are relatively strong. To this end, a phase grating with an effective phase deviation of &lgr;/4 is embodied on a scale 2, as well as a reference marker (R) in the form of an amplitude structure. A compact structure is achieved by the divergent illumination of the grating located in front of the scale.
Abstract:
A point of sale (POS) device, such as an optical scanner, reduces the beam diameters of two light beam components having been emitted from a common light source and split by an optical beam splitter. The optical scanner includes a light source emitting a light beam, a light beam splitter splitting the emitted light beam, a polygon mirror reflecting the split light beam components into mutually different directions, and groups of mirrors. The groups of mirrors are provided for each reading window, allowing the light beam components to be emitted therefrom. The emitted light beam components can then impinge on an object, whereupon the optical scanner detects by detectors and reads a bar code located on the object. The optical scanner also includes beam shaping devices, one of which is placed between the light source and light splitting device and the other of which is placed in one of the optical paths followed by one of the light beam components. Since the beam diameter of the light beam components are reduced, and since the light beams are emitted from multiple reading windows, bar codes with narrow spaces between the bars can be read more easily, even with varying orientations of the bar code on the object.
Abstract:
A high sensitivity beam deflection sensing optical device, such as an atomic force microscope, including one or more of the following: specified means in the path of the incident beam for adjusting the size and/or power of the incident beam spot, means for moving the incident beam spot with movement of the object whereby to maintain the position of the spot on the object, and means for increasing the signal to noise ratio of the optical detector in which adjusted gains are applied to different segments of the optical detector.
Abstract:
An opto-isolator incorporating a MEMS device includes an optical signal source and an optical signal detector defining therebeween an optical path for communication of optical signals. A MEMS device having an actuator for controlling a moveable element is disposed between the source and detector for manipulating the optical signals. In one embodiment, the moveable element is a shutter which is operable to selectively allow optical signals to be received by the detector and prevent signals from being detected. In another embodiment, the moveable member is a MEMS tilt mirror for selectively directing optical signals to the detector.