Abstract:
A microscopic laminar-flow heat exchanger, well-suited for cooling a heat generating device such as a semiconductor integrated circuit, includes a plurality of thin plates, laminated together to form a block. Each plate has a microscopic recessed portion etched into one face of the plate and a pair of holes cut through the plate such that when the block is formed, the holes align to form a pair of coolant distribution manifolds. The manifolds are connected via the plurality of microscopic channels formed from the recessed portions during the lamination process. Coolant flow through these channels effectuates heat removal.
Abstract:
A programmable processor and method for improving the performance of processors by expanding at least two source operands, or a source and a result operand, to a width greater than the width of either the general purpose register or the data path width. The present invention provides operands which are substantially larger than the data path with of the processor by using the contents of a general purpose register to specify a memory address at which a plurality of data path widths of data can be read or written, as well as the size and shape of the operand. In addition, several instructions and apparatus for implementing these instructions are described which obtain performance advantages if the operands are not limited to the width and accessible number of general purpose registers.
Abstract:
A processor and method for performing outer product and outer product accumulation operations on vector operands requiring large numbers of multiplies and accumulations is disclosed.
Abstract:
A programmable processor and method for improving the performance of processors by expanding at least two source operands, or a source and a result operand, to a width greater than the width of either the general purpose register or the data path width. The present invention provides operands which are substantially larger than the data path width of the processor by using the contents of a general purpose register to specify a memory address at which a plurality of data path widths of data can be read or written, as well as the size and shape of the operand. In addition, several instructions and apparatus for implementing these instructions are described which obtain performance advantages if the operands are not limited to the width and accessible number of general purpose registers.
Abstract:
Systems and apparatuses are presented relating a programmable processor comprising an execution unit that is operable to decode and execute instructions received from an instruction path and partition data stored in registers in the register file into multiple data elements, the execution unit capable of executing group data handling operations that re-arrange data elements in different ways in response to data handling instructions, the execution unit further capable of executing a plurality of different group floating-point and group integer arithmetic operations that each arithmetically operates on the multiple data elements stored in registers in the register file to produce a catenated result that is returned to a register in the register file, wherein the catenated result comprises a plurality of individual results.
Abstract:
A programmable processor and method for improving the performance of processors by incorporating an execution unit configurable to execute a plurality of instruction streams from the plurality of threads, wherein each instruction stream includes a group instruction that operates on a plurality of data elements in partitioned fields of at least one of the registers to produce a catenated result.
Abstract:
A programmable processor and method for improving the performance of processors by expanding at least two source operands, or a source and a result operand, to a width greater than the width of either the general purpose register or the data path width. The present invention provides operands which are substantially larger than the data path width of the processor by using the contents of a general purpose register to specify a memory address at which a plurality of data path widths of data can be read or written, as well as the size and shape of the operand. In addition, several instructions and apparatus for implementing these instructions are described which obtain performance advantages if the operands are not limited to the width and accessible number of general purpose registers.
Abstract:
A programmable processor and method for improving the performance of processors by expanding at least two source operands, or a source and a result operand, to a width greater than the width of either the general purpose register or the data path width. The present invention provides operands which are substantially larger than the data path width of the processor by using the contents of a general purpose register to specify a memory address at which a plurality of data path widths of data can be read or written, as well as the size and shape of the operand. In addition, several instructions and apparatus for implementing these instructions are described which obtain performance advantages if the operands are not limited to the width and accessible number of general purpose registers.
Abstract:
Systems and apparatuses are presented relating a programmable processor comprising an execution unit that is operable to decode and execute instructions received from an instruction path and partition data stored in registers in the register file into multiple data elements, the execution unit capable of executing a plurality of different group floating-point and group integer arithmetic operations that each arithmetically operates on multiple data elements stored registers in a register file to produce a catenated result that is returned to a register in the register file, wherein the catenated result comprises a plurality of individual results, wherein the execution unit is capable of executing group data handling operations that re-arrange data elements in different ways in response to data handling instructions.