Abstract:
An illumination apparatus includes: a rod-like light guide member that directs light emitted from a first light source and a second light source from an emission surface to an illuminated body while propagating the light by reflection surfaces; and a light blocking member including a second surrounding portion slidably covering another end of the light guide member, wherein the second surrounding portion includes: a light blocking portion protruding toward one end of the light guide member and covering the emission surface of the light guide member; and a cut-out portion adjacent to the light blocking portion and exposing the reflection surface of the light guide member.
Abstract:
A shield cable includes: a first film member made of an insulating resin; a second film member made of an insulating resin; a laminated body including a center conductor surrounded by the first film member and the second film member; an easy-adhesion layer positioned around the laminated body; an outer conductor positioned around the easy-adhesion layer; and a protective film that covers around the outer conductor, wherein the shield cable is flat when viewed in cross section.
Abstract:
An image sensor unit (60) includes: a light source part (25) that emits at least ultraviolet light in a main-scan direction to an object to be illuminated; a light condenser (32) that focuses light from the object to be illuminated; an image sensor (75) that converts the light focused by the light condenser (32), into an electric signal; and an ultraviolet cut part (65) that is disposed between the object to be illuminated and the image sensor (75), cuts off ultraviolet light in light reflected by the object to be illuminated, and allows fluorescent light to transmit therethrough. The image sensor (75) includes an ultraviolet detection part (77) that detects light in the ultraviolet light emitted from the light source part (25), the detected light having been reflected by a reflecting part but having not transmitted through the ultraviolet cut part (65).
Abstract:
There is provided with a lighting apparatus. An elongated first light emission unit and an elongated second light emission unit each extend in a longer side direction and a shorter side direction. The first light emission unit and the second light emission unit have respective end portions in the longer side direction that are connected to each other via a restricting mechanism having a shape that restricts relative movement of the first and second light emission units in the shorter side direction.
Abstract:
A radiation detector includes: a wavelength conversion member that includes a fluorescent layer that emits fluorescent light when radiation enters this layer; an image sensor that converts the fluorescent light emitted from the fluorescent layer into an electric signal; and a wiring board where the image sensor is provided. The image sensor is provided on the surface on the lower side of the wiring board along one long side of the wiring board. One part of the wavelength conversion member is provided to be overlapped on the image sensor while the other part extends from the one long side of the wiring board so as not to be overlapped on the image sensor and the wiring board when viewed from radiation incident direction. The wiring board is disposed inclined so that the side where the wavelength conversion member extends can be disposed upward.
Abstract:
Provided is a control unit of a conveying apparatus, the conveying apparatus including: a conveying unit that conveys recording paper along a conveyance path; an imaging unit that images the recording paper; and a light emitting unit arranged on an opposite side of the imaging unit across the conveyance path, wherein the control unit detects conveyance information of the recording paper based on image information of the recording paper imaged by the imaging unit in a state in which light from the light emitting unit is transmitted through the recording paper. The control unit detects the conveyance information of the recording paper based on a plurality of images of the recording paper imaged at different timings by the imaging unit.
Abstract:
There is provided with a method for manufacturing a resin article provided with a plating film. A resin article is irradiated with ultraviolet rays. A catalyst is applied to the resin article, while applying shock to the resin article that has been irradiated with the ultraviolet rays. An electroless plating is performed on the resin article.
Abstract:
An illumination apparatus includes: a light source; a rod-like light guide having an incident surface that enters light from the light source that is disposed on one side in a main-scan direction, a diffusing surface that diffuses light that enters from the incident surface, and an emission surface that linearly emits light towards a bill; and a reflection member having a reflection surface that reflects light diffused by the diffusing surface to the light guide. The light guide has a locking projection that is locked in the reflection member on one side in the main-scan direction. The reflection member has a locking hole in which the locking projection is locked. A cut-out portion at which one part is cut out is formed in the locking hole.
Abstract:
There is provided with a method of manufacturing an electrostatic adsorptive belt. A portion for forming an electrode pattern on a first resin layer is irradiated with an ultraviolet laser beam. A region including the portion for forming the electrode pattern on the first resin layer is oxidated. The electrode pattern if formed on the first region layer by plating. A second resin layer is formed on a surface of the first resin layer on which the electrode pattern is formed.
Abstract:
An illumination apparatus includes: a light source that emits light at a plurality of wavelengths; and a rod-like light guide that shapes light emitted by the light source into a line, wherein the light guide is made of a material including a region in which transmittance of wavelengths is not constant, the light source is arranged at one end of the light guide in a longitudinal direction, the light source includes a wavelength of a region in which transmittance of the light guide is not constant, and a reflection surface including reflection member having reflectance differences for the light at a plurality of wavelengths is formed at the other end of the light guide in the longitudinal direction.