Abstract:
Embodiments of the invention are directed to resin-soluble thermoplastic veils for use in liquid resin infusion processes, methods of manufacturing resin-soluble thermoplastic veils for use in liquid resin infusion processes, and methods of manufacturing composite articles using resin-soluble thermoplastic veils for use in liquid resin infusion applications. The resin-soluble thermoplastic veils according to embodiments of the invention and of which function as a toughening agent in composites having the veil incorporated therein have improved characteristics including, but not limited to, increased uniformity and decreased thickness relative to prior art veils. These characteristics translate into improvements in the processing of a composite article including, but not limited to, a substantial or complete elimination in premature dissolution of the veil during cure. The resultant composite article also realizes improvements including, but not limited to, distribution evenness of the toughening agent throughout the composite.
Abstract:
Thermoplastic polymer particles directly cross-linked together or cross-linked via a separate and independent polymer network to form an inter-penetrating network are disclosed herein, along with methods of manufacturing and use as interleaf tougheners of pre-pregs and composite articles.
Abstract:
Provided herein are processes for recovering metal present at low concentration from an acidic aqueous solution, including contacting the acidic aqueous solution with an organic phase solution including one or more 5-(C8 to C14 alkyl)-2-hydroxyaryloxime, thereby extracting at least part of the metal from the acidic aqueous phase; increasing or maintaining the concentration of metal in the organic phase solution by recycling a portion of the organic phase solution containing the metal and contacting the organic phase with an acidic aqueous solution containing the metal; contacting the organic phase solution containing metal with an aqueous phase strip solution comprising an inorganic compound that back-extracts the metal, thereby stripping at least part of the metal from the organic phase solution to the aqueous phase strip solution; and separating the metal from the aqueous phase strip solution, thereby recovering the metal.
Abstract:
A resin-soluble thermoplastic polymer veil toughening element for a curable composition wherein the polymer element is a non-woven veil in solid phase adapted to undergo at least partial phase transition to fluid phase on contact with a component of the curable resin matrix composition in which it is soluble at a temperature which is less than the temperature for substantial onset of gelling and/or curing of the curable composition and which temperature is less than the polymer elements melt temperature; a method for the preparation thereof, a preform support structure for a curable composition comprising the at least one thermoplastic veil element together with structural reinforcement fibers, methods for preparation thereof, a curable composition comprising the at least one thermoplastic veil element or the support structure and a curable resin matrix composition, a method for preparation and curing thereof, and a cured composite or resin body obtained thereby, and known and novel uses thereof.
Abstract:
Methods of enhancing recovery of value sulfide or precious minerals from an ore containing Mg-silicate, slime forming minerals, and/or clay by subjecting the ore to a flotation process performed under acidic conditions, in conjunction with the addition of a froth phase modifier agent to the ore, are provided herein.
Abstract:
Hydrophobically modified Si-containing polyamines are useful for treating scale in industrial process streams. Preferred hydrophobically modified Si-containing polyamines are particularly useful for treating aluminosilicate scale in difficult-to-treat industrial process streams, such as in the Bayer alumina process streams, nuclear waste streams and kraft paper mill effluent streams.
Abstract:
A composite material that includes a layer of reinforcing fibres impregnated with a curable resin matrix and a plurality of electrically conductive composite particles positioned adjacent or in proximity to the reinforcing fibres. Each of the electrically conductive composite particles is composed of a conductive component and a polymeric component, wherein the polymeric component includes one or more polymers that are initially in a solid phase and are substantially insoluble in the curable resin, but is able to undergo at least partial phase transition to a fluid phase during a curing cycle of the composite material.
Abstract:
Formulations for value mineral collector compositions composed of at least one first collector selected from an organic ammonium salt of an organic sulfur-containing acid; and at least one second collector selected from neutral collectors and/or organic ammonium salts of an organic sulfur-containing acids, such that the second collector is different from said first collector, are provided herein, along with methods for making and using same.
Abstract:
Froth flotation processes that include adding a beneficiating amount of a value mineral collector composed of an organic ammonium salt of a sulfur-containing acid to at least one stage of a froth flotation process to recover value minerals from mineral ore bodies are disclosed herein.