Abstract:
A process for manufacturing a composite article, which include combining a nonwoven mat of extruded fibers with one or more layers of fabrics to form a preform, and injecting the preform with a liquid thermosetting resin. The extruded fibers are formed by combining and extruding a thermoplastic carrier material with a toughening material within a predetermined temperature range. The carrier material is immiscible with the toughening material, and the toughening material is encapsulated within the carrier material. The carrier material is at least partially soluble in the thermosetting resin within a predetermined temperature range, and the toughening material is insoluble in the thermosetting resin during a cure cycle. A preform having at least one nonwoven mat of extruded fibers is also disclosed.
Abstract:
A deformable, coated radius filler composed of a continuous or elongated fibrous structure and a tacky, resin surface coating formed by pulling a dry, continuous or elongated fibrous structure through a heated resin bath. The coated radius filler has an inner portion that is substantially free of resin and the resin surface coating has a substantially uniform thickness.
Abstract:
A deformable, coated radius filler composed of a continuous or elongated fibrous structure and a tacky, resin surface coating formed by pulling a dry, continuous or elongated fibrous structure through a heated resin bath. The coated radius filler has an inner portion that is substantially free of resin and the resin surface coating has a substantially uniform thickness.
Abstract:
Embodiments of the invention are directed to resin-soluble thermoplastic veils for use in liquid resin infusion processes, methods of manufacturing resin-soluble thermoplastic veils for use in liquid resin infusion processes, and methods of manufacturing composite articles using resin-soluble thermoplastic veils for use in liquid resin infusion applications. The resin-soluble thermoplastic veils according to embodiments of the invention and of which function as a toughening agent in composites having the veil incorporated therein have improved characteristics including, but not limited to, increased uniformity and decreased thickness relative to prior art veils. These characteristics translate into improvements in the processing of a composite article including, but not limited to, a substantial or complete elimination in premature dissolution of the veil during cure. The resultant composite article also realizes improvements including, but not limited to, distribution evenness of the toughening agent throughout the composite.
Abstract:
A manufacturing process, which includes: (i) preparing a preform; (ii) laying the preform within a mold; (iii) heating the mold to a predetermined temperature; and (iv) injecting a modified resin system, wherein the modified resin system is formulated to have a viscosity below a threshold viscosity at a specific temperature and a high level of toughness. In one embodiment, the modified resin system contains a combination of epoxies, a curing agent, core-shell rubber particles, a thermoplastic material in an amount of less than 7% by weight, wherein in a cured condition, the thermoplastic material is separated into aggregate domains from the base resin, each aggregate domain having an island-like morphology.
Abstract:
Embodiments of the invention are directed to resin-soluble thermoplastic veils for use in liquid resin infusion processes, methods of manufacturing resin-soluble thermoplastic veils for use in liquid resin infusion processes, and methods of manufacturing composite articles using resin-soluble thermoplastic veils for use in liquid resin infusion applications. The resin-soluble thermoplastic veils according to embodiments of the invention and of which function as a toughening agent in composites having the veil incorporated therein have improved characteristics including, but not limited to, increased uniformity and decreased thickness relative to prior art veils. These characteristics translate into improvements in the processing of a composite article including, but not limited to, a substantial or complete elimination in premature dissolution of the veil during cure. The resultant composite article also realizes improvements including, but not limited to, distribution evenness of the toughening agent throughout the composite.