Abstract:
A apparatus is disclosed. The apparatus includes a remapping circuit to facilitate access of one or more I/O devices to a memory device for direct memory access (DMA) transactions. The remapping circuit includes a translation mechanism to perform memory address translations for I/O DMA transactions via address window-based translations.
Abstract translation:公开了一种装置。 该装置包括重新映射电路,以便于将一个或多个I / O设备访问到用于直接存储器访问(DMA)事务的存储器设备。 重新映射电路包括一个翻译机制,用于通过地址窗口的翻译来执行用于I / O DMA事务的存储器地址转换。
Abstract:
In one embodiment, fault information relating to a fault associated with the operation of guest software is received. Further, a determination is made as to whether the fault information satisfies one or more filtering criterion. If the determination is positive, control remains with the guest software and is not transferred to the virtual machine monitor (VMM).
Abstract:
A processing system has a processor that can operate in a normal ring 0 operating mode and one or more higher ring operating modes above the normal ring 0 operating mode. In addition, the processor can operate in an isolated execution mode. A memory in the processing system may include an ordinary memory area that can be accessed from the normal ring 0 operating mode, as well as an isolated memory area that can be accessed from the isolated execution mode but not from the normal ring 0 operating mode. The processing system may also include an operating system (OS) nub, as well as a key generator. The key generator may generate an OS nub key (OSNK) based at least in part on an identification of the OS nub and a master binding key (BK0) of the platform. Other embodiments are described and claimed.
Abstract:
In some embodiments, the invention involves a system to deprivilege components of a virtual machine monitor and enable deprivileged service virtual machines (SVMs) to handle selected trapped events. An embodiment of the invention is a hybrid VMM operating on a platform with hardware virtualization support. The hybrid VMM utilizes features from both hypervisor-based and host-based VMM architectures. In at least one embodiment, the functionality of a traditional VMM is partitioned into a small platform-dependent part called a micro-hypervisor (MH) and one or more platform-independent parts called service virtual machines (SVMs). The micro-hypervisor operates at a higher virtual machine (VM) privilege level than any SVM, while the SVM and other VMs may still have access to any instruction set architecture (ISA) privilege level. Other embodiments are described and claimed.
Abstract:
In one embodiment, a method for resolving address space conflicts includes detecting that a guest operating system attempts to access a region occupied by a first portion of a virtual machine monitor and relocating the first portion of the virtual machine monitor within the first address space to allow the guest operating system to access the region previously occupied by the first portion of the virtual machine monitor.
Abstract:
In one embodiment, a method includes transitioning control to a virtual machine (VM) from a virtual machine monitor (VMM), determining that a VMM timer indicator is set to an enabling value, and identifying a VMM timer value configured by the VMM. The method further includes periodically comparing a current value of a timing source with the VMM timer value, generating an internal event if the current value of the timing source has reached the VMM timer value, and transitioning control to the VMM in response to the internal event without incurring an event handling procedure in any one of the VMM and the VM.
Abstract:
Techniques for handling certain virtualization events occurring within a virtual machine environment. More particularly, at least one embodiment of the invention pertains to handling events related to the sub-operating system mode using a dedicated virtual machine monitor (VMM) called the system management mode VMM (SVMM), which exists in a separate portion of memory from a main virtual machine monitor (MVMM) used to handle virtualization events other than those related to the sub-operating system mode. In at least one embodiment, a technique for initializing and managing transitions to and from the SVMM is disclosed.
Abstract:
In one embodiment, information pertaining to a first fault occurring during operation of a virtual machine (VM) is stored in a first field. A second fault is detected while delivering the first fault to the VM, and a determination is made as to whether the second fault is associated with a transition of control to a virtual machine monitor (VMM). If this determination is positive, information pertaining to the second fault is stored in a second field, and control is transitioned to the VMM.
Abstract:
A processor executive (PE) handles an operating system executive (OSE) in a secure environment. The secure environment has a fused key (FK) and is associated with an isolated memory area in the platform. The OSE manages a subset of an operating system (OS) running on the platform. The platform has a processor operating in one of a normal execution mode and an isolated execution mode. The isolated memory area is accessible to the processor in the isolated execution mode. A PE supplement supplements the PE with a PE manifest representing the PE and a PE identifier to identify the PE. A PE handler handles the PE using the FK and the PE supplement.
Abstract:
A processor executive (PE) handles an operating system executive (OSE) in a secure environment. The secure environment has a platform key (PK) and is associated with an isolated memory area in the platform. The OSE manages a subset of an operating system (OS) running on the platform. The platform has a processor operating in one of a normal execution mode and an isolated execution mode. The isolated memory area is accessible to the processor in the isolated execution mode. A PE supplement supplements the PE with a PE manifest representing the PE and a PE identifier to identify the PE. A PE handler handles the PE using the PK and the PE supplement.