Abstract:
A processing system has a processor that can operate in a normal ring 0 operating mode and one or more higher ring operating modes above the normal ring 0 operating mode. In addition, the processor can operate in an isolated execution mode. A memory in the processing system may include an ordinary memory area that can be accessed from the normal ring 0 operating mode, as well as an isolated memory area that can be accessed from the isolated execution mode but not from the normal ring 0 operating mode. The processing system may also include an operating system (OS) nub, as well as a key generator. The key generator may generate an OS nub key (OSNK) based at least in part on an identification of the OS nub and a master binding key (BK0) of the platform. Other embodiments are described and claimed.
Abstract:
A processor with instructions to operate on different data types stored in a single logical register file. According to one embodiment of the invention, a processor includes a number of physical registers, a memory unit, and a decode/execution unit. The memory unit is to make the number of physical registers appear to software as a single software-visible register file. The decode/execution unit is to execute on the contents of the single software-visible register file instructions of a first instruction type and of a second instruction type, wherein the single software-visible register file is to be operated as a flat register file during execution of instructions of the second instruction type and as a stack referenced register file during execution of instructions of the first instruction type.
Abstract:
A computer system is provided having a register stack engine to manage data transfers between a backing store and a register stack. The computer system includes a processor and a memory coupled to the processor through a memory channel. The processor includes a register stack to store data from one or more procedures in one or more frames, respectively. The register stack engine monitors activity on the memory channel and transfers data between selected frames of the register stack and a backing store in the memory responsive to the available bandwidth on the memory channel.
Abstract:
An example processing system comprises a processor to execute in an isolated execution mode in a ring 0 operating mode. The processor also supports one or more higher ring operating modes, as well as a normal execution mode. The processing system also comprises memory, as well as a machine-accessible medium having instructions. When the processing system executes the instructions, the processing system configures the processor to run in the isolated execution mode, configures the processing system to establish an isolated memory area in the memory, and loads initialization software into the isolated memory area. The processing system may provide a manifest that represents the initialization software. The initialization software may be verified, based at least in part on the manifest.
Abstract:
In an embodiment of the present invention, a technique is provided for remote attestation. An interface maps a device via a bus to an address space of a chipset in a secure environment for an isolated execution mode. The secure environment is associated with an isolated memory area accessible by at least one processor. The at least one processor operates in one of a normal execution mode and the isolated execution mode. A communication storage corresponding to the address space allows the device to exchange security information with the at least one processor in the isolated execution mode in a remote attestation.
Abstract:
In one embodiment, a method of remote attestation for a special mode of operation. The method comprises storing an audit log within protected memory of a platform. The audit log is a listing of data representing each of a plurality of IsoX software modules loaded into the platform. The audit log is retrieved from the protected memory in response to receiving a remote attestation request from a remotely located platform. Then, the retrieved audit log is digitally signed to produce a digital signature for transfer to the remotely located platform.
Abstract:
A method and apparatus for executing floating point and packed data instructions using a single physical register file that is aliased. According to one aspect of the invention, a processor is provided that includes a decode unit, a mapping unit, and a storage unit. The decode unit is configured to decode instructions and their operands from at least one instruction set including at least a first and second set of instructions. The storage unit includes a physical register file. The mapping unit is configured to map operands used by the first set of instructions to the physical register file in a stack referenced manner. In addition, the mapping unit is configured to map operands used by the second set of instructions to the same physical register file in a non-stack reference manner.
Abstract:
A method and apparatus for executing different sets of instructions that cause a processor to perform different data type operations on different physical registers files that logically appear to software as a single aliased register file. According to one aspect of the invention, a processor is provided that includes at least two physical register files--one for executing scalar data type operations and the other for executing packed data type operations. In addition, the processor includes a transition unit that is configured to cause the two physical register files to logically appear to software executing on the processor as a single logical register file.
Abstract:
A method and apparatus for providing, in a processor, a shift operation on a packed data element having multiple values. One embodiment of a central processing unit (CPU) includes instruction fetch logic to fetch a single-instruction-multiple-data (SIMD) shift instruction. A register stores a multiple data elements to be operated upon by the SIMD shift instruction. A barrel shifter concurrently shifts the data elements in a bit-wise manner by a variable number of bit positions in response to the SIMD shift instruction.
Abstract:
A method and apparatus for providing, in a processor, a shift operation on a packed data element having multiple values. The apparatus having multiple muxes, each of the multiple muxes having a first input, a second input, a select input and an output. Each of the multiple bits that represent a shifted packed intermediate result on a first bus is coupled to the corresponding first input. Each of the multiple bits representing a replacement bit for one of the multiple values is coupled to a corresponding second input. Each of the multiple bits driven by a correction circuit is coupled to a corresponding select input. Each output corresponds to a bit of a shifted packed result.