Abstract:
Compact optoelectronic modules are described that, in some implementations, can have reduced heights, while at the same time having very little optical crosstalk or detection of stray light. An optoelectronic module having optical channel can include a support on which is mounted an optoelectronic device arranged to emit or detect light at a particular one or more wavelengths. The module has a cover including an optically transmissive portion over the optoelectronic device. The optically transmissive portion is surrounded laterally by sections of the cover that are substantially non-transparent to the one or more wavelengths. A passive optical element is present on a surface of the optically transmissive portion. A spacer separates the support from the cover. The cover can be relatively thin so that the overall height of the module is relatively small.
Abstract:
The present disclosure describes proximity sensor modules that include a time-of-flight (TOF) sensor. The module can include a plurality of chambers corresponding, respectively, to a light emission channel and a light detection channel. The channels can be optically separated from one another such that light from a light emitter element in the light emission chamber does not impinge directly on light sensitive elements of the TOF sensor in the light detection chamber. To achieve a module with a relatively small footprint, some parts of the TOF sensor can be located within the light emission chamber.
Abstract:
An optoelectronic module includes a transceiver operable to transmit data optically. The transceiver includes a light emitter to emit light from the module, and a light detector to detect light entering the module. The light detector is disposed at a rotationally symmetric position with respect to a central axis of the module. Such modules can help facilitate the exchange of data optically between two devices.
Abstract:
The present disclosure describes refresh control methods for generating distance data and optoelectronic modules that are operable to provide distance information at a predetermined refresh rate, but with a reduction in overall power consumption attributable to the distance determinations.
Abstract:
Then optical device comprises a first member (P) and a second member (O) and, arranged between said first and second members, a third member (S) referred to as spacer. The spacer (S) comprises —one or more portions referred to as distancing portions (Sd) in which the spacer has a vertical extension referred to as maximum vertical extension; —at least two separate portions referred to as open portions (4) in which no material of the spacer is present; and —one or more portions referred to as structured portions (Sb) in which material of the spacer is present and in which the spacer has a vertical extension smaller than said maximum vertical extension. Such optical devices can be used in or as multi-aperture cameras.
Abstract:
Fabricating an optics wafer includes providing a wafer including a core region composed of a glass-reinforced epoxy. The wafer further includes a first resin layer on a top surface of the core region and a second resin layer on a bottom surface of the core region. The core region and first and second resin layers are substantially non-transparent for a specific range of the electromagnetic spectrum. The wafer further includes vertical transparent regions that extend through the core region and the first and second resin layers and are composed of a solid material that is substantially transparent for the specific range of the electromagnetic spectrum. The wafer is thinned, and optical structures are provided on one or more exposed surfaces of at least some of the transparent regions.
Abstract:
The disclosure describes customizable optoelectronic modules and methods for standardizing a plurality of the customizable optoelectronic modules. The customizable optoelectronic modules can be configured to mitigate dimensional variations and misalignments in a number of their respective constituent components such as optical assemblies and sensor covers. The customizable optoelectronic modules and methods for standardizing a plurality of the customizable optoelectronic modules can obviate the need for binning during manufacturing thereby saving considerable resources such as time and expense.
Abstract:
An optical proximity sensor module includes a substrate, a light emitter mounted on a first surface of the substrate, the light emitter being operable to emit light at a first wavelength, and a light detector mounted on the first surface of the substrate, the light detector being operable to detect light at the first wavelength. The module includes an optics member disposed substantially parallel to the substrate, and a separation member, wherein the separation member is disposed between the substrate and the optics member. Multiple modules can be fabricated in a wafer-level process and can be composed of reflowable materials so that the modules can be incorporated more easily into devices whose manufacture occurs, at least in part, at elevated temperatures when the module is integrated into the device or during subsequent manufacturing processes.
Abstract:
Time-of-flight (TOF) based systems using light pulse compression are described and, in some cases, can help increase demodulation contrast. Further, light pulse shaping techniques are described that, in some cases, can help reduce phase non-linearity and distance-calculation errors. The techniques can be used, for example, in measurement systems, as well as imaging systems in which a time-of-flight and/or distance information is obtained. The time-of-flight and/or distance information can be used to reconstruct and display a three-dimensional image of a scene. The light compression techniques also can be used to provide reference signals.
Abstract:
The present disclosure describes various RGB-IR cameras, as well as new applications and methods of using such cameras. An apparatus includes an image sensor module including an image sensor. The image sensor has an active region including pixels operable to sense radiation in the visible and IR parts of the spectrum. The module can include, in some cases, a switchable IR filter disposed between the active region of the image sensor and an optical assembly. In various implementations, the module can be used in conjunction with one or more of the following: generating color images, generating IR images, performing iris recognition, performing facial recognition, and performing eye tracking/eye gazing.