Abstract:
The disclosure provides an optical lens including a body. The body includes a light-incident surface and a light-emitting surface. The light-emitting surface is located at an outer surface of the body. The light-incident surface is located at a bottom surface of the body. The body includes a concave portion located at the center of the bottom surface. The concave portion is dented from the bottom surface to the light-emitting surface for accommodating a light source, and the surface of the concave portion is the light-incident surface. The light-emitting surface includes a dented center light-emitting zone and an arc-shaped peripheral light-emitting zone. The dented center light-emitting zone is located at a center zone of the outer surface of the body. The dented center light-emitting zone is aligned with the center of the bottom surface of the body and is indented in a direction toward the light-incident surface.
Abstract:
A control device including a first switch, a control unit and a second switch is provided. When the first switch is turned on, a power signal generated by a power supply is transmitted to a lighting load via the first switch. The brightness of the lighting load is gradually increased or reduced as time increases. When the first switch is turned on, the control unit executes a countdown according to a time value. Upon finishing the countdown, the control unit generates a trigger signal and simultaneously the brightness of the lighting load is at a set value. When receiving the trigger signal, the second switch stops transmitting the power signal from the first switch to the lighting load at first and then transmits the power signal from the first switch to the lighting load such that the brightness of the lighting load keeps at the set value.
Abstract:
A light bar structure is disclosed. A light source module is disposed on a circuit board. At least two power input portions are disposed on the circuit board and are in parallel connection. The at least two power input portions are electrically connected to the light source module.
Abstract:
A light-emitting diode (LED) with a bump structure on a sidewall is provided. The LED comprises a substrate, an epitaxial structure, a first conductive bump, a second conductive bump, a first extended electrode and a second extended electrode. The substrate has a top surface, a first side surface and an inclined surface between the top surface and the first side surface. The epitaxial structure is disposed on the top surface of the substrate, and comprises a N-type semiconductor layer, a light-emitting layer, a P-type semiconductor layer, a transparent conductive layer, a P-electrode and a N-electrode. The first extended electrode and the second extended electrode connect the P-electrode and the N-electrode, extend through the inclined surface, and are electrically connected to the first and the second conductive bumps, respectively. A mounting structure comprises said LED, a sub-mount and a connector mounting the LED onto the sub-mount.
Abstract:
A method for producing a light-emitting diode is provided, including the following steps. First, a carrier is provided, wherein the carrier comprises a die bonding surface. Then, a die bonding adhesive layer is formed on the die bonding surface, wherein the die bonding adhesive layer has a photoresist property. Next, at least one lighting chip is disposed on the die bonding adhesive layer, and an uncovered portion of the die bonding adhesive layer is not covered by the lighting chip. Finally, the uncovered portion of the die bonding adhesive layer is removed.
Abstract:
The disclosure provides a light emitting diode projection bulb including a heat dissipation base, a light emitting diode module, and a annular heat dissipation member. The heat dissipation base includes a bottom surface, a sidewall surrounding the bottom surface, and a annular rim. The annular rim is connected to an end of the sidewall to define a first opening facing toward outside. A surface of the annular rim forms a plurality of first convection holes and a plurality of first locating portions. The light emitting diode module is installed on the bottom surface of the heat dissipation base and emits light toward the first opening. The annular heat dissipation member includes a second opening, a plurality of second convection holes, and a plurality of second locating portions.
Abstract:
A light emitting diode includes a substrate, a first semiconductor layer, a luminous layer, a second semiconductor layer, a current diffusion layer, a third semiconductor layer, a first electrode, a second electrode, and an insulation layer. The first semiconductor layer is formed above the substrate. The luminous layer is formed on the first semiconductor layer, and exposes a portion of the first semiconductor layer. The second semiconductor layer is formed on the luminous layer. The current diffusion layer is formed on the second semiconductor layer. The third semiconductor layer is formed on the current diffusion layer. The first electrode is formed on the first semiconductor layer. The second electrode includes a base portion formed on the surface of the substrate, and plural comb structures extending upward vertically. Each tip of the comb structure is in the third semiconductor layer. The insulation layer exposes the tip of each comb structure.
Abstract:
The invention provides an apparatus for fabricating a periodic micro-pattern by laser beams. The apparatus includes an ultrafast laser light source configured to generate an output laser beam. A diffraction optical element is configured to divide the output laser beam into a plurality of diffractive laser beams. A confocal system is configured to focus the plurality of diffractive laser beams on a focal point, so that the plurality of diffractive laser beams produces an interference light beam with interference phenomena. The interference light beam ablates a surface of an element to fabricate a periodic micro-pattern on the surface of the element. The confocal system includes a first lens, a second lens and a light shielding mask. The plurality of diffractive laser beams passes through the first lens, the light shielding mask and the second lens in sequence.
Abstract:
A lamp structure includes a shell, a light board, at least one light emitting diode, two electrical connecting elements, an electrical terminal, and a driving module. The shell has a first end and a second end opposite to each other. The light board is disposed on the first end of the shell. The light board has two through holes and two conductive portions respectively disposed adjacent to the through holes. The electrical connecting elements are disposed around the through holes and on the light board, and electrically connected to the conductive portions, respectively. The driving module includes a driving circuit and two electrodes. The driving circuit is disposed at a side of the light board opposite to the light emitting diode. The two electrodes are electrically connected to the driving circuit. The two electrodes thread through the two through holes and interfere with the two electrical connecting elements, respectively.
Abstract:
A light emitting diode (LED) device includes a transparent substrate, a first reflection layer, a LED chip, a positive electrode, a negative electrode and a wavelength-converting layer. The LED chip is disposed on a surface of the transparent substrate, and the first reflection layer is disposed between the LED chip and the transparent substrate. The positive electrode and the negative electrode are disposed on an end portion of the transparent substrate and are electrically connected with the LED chip. The wavelength-converting layer covers the first reflection layer and the LED chip.