Abstract:
An optical data system and method are disclosed. An optical data system includes an array of lasers that are modulated by the plurality of modulation signals to provide a plurality of pairs of orthogonally polarized optical data signals. The optical data system further includes an optical multiplexing system to combine each of the pairs of orthogonally polarized optical data signals to provide a plurality of dual-channel optical data signals.
Abstract:
An optical bus is described for optical signal broadcasting. The optical bus can include a substrate and input optical waveguides formed on the substrate. First and second sets of output optical waveguides can also be formed on the substrate. Optical power splitters on the substrate can have an input and multiple outputs. The optical power splitters can be optically coupled to an input optical waveguide and can split an input optical beam into multiple output optical beams. The optical bus can include a waveguide shuffle network formed on the substrate. The waveguide shuffle network can include intersecting optical waveguides and can optically couple outputs from each of the optical power splitters to the first set of output optical waveguides and optically couple different outputs from each of the optical power splitters to the second set of output optical waveguides.
Abstract:
A VCSEL includes a grating layer configured with a non-periodic, sub-wavelength grating, in which the non-periodic, sub-wavelength grating includes at least one first section configured to have a relatively low reflection coefficient and at least one second section configured to have a relatively high reflection coefficient to cause light to be reflected in a predetermined, non-Gaussian, spatial mode across the sub-wavelength grating. The VCSEL also includes a reflective layer and a light emitting layer disposed between the grating layer and the reflector, in which the sub-wavelength grating and the reflector form a resonant cavity.
Abstract:
A semiconductor structure includes a substrate, a thermally and electrically conductive mask positioned upon the substrate, and an epitaxial lateral over growth (ELOG) material positioned upon the thermally and electrically conductive mask.
Abstract:
An electrically actuated device comprises an active region (16) disposed between a first electrode (12) and a second electrode (14), a fixed dopant (24) distributed within the active region, and at least one type of mobile dopant situated near an interface between the active region and the second electrode.
Abstract:
An optical engine for providing a point-to-point optical communications link between a first computing device and a second computing device. The optical engine includes a modulated hybrid micro-ring laser formed on a substrate and configured to generate an optical signal traveling parallel to the plane of the substrate. The optical engine further includes a waveguide, also formed in a plane parallel to the plane of the substrate, that is configured to guide the optical signal from the modulated ring laser to a defined region, a waveguide coupler at the defined region configured for coupling the optical signal into a multi-core optical fiber, and a multi-core optical fiber at the defined region that is configured to receive and transport the optical signal to the second computing device.