Abstract:
This disclosure relates to techniques for estimating baseband power consumption and using the baseband power consumption estimation to select baseband operation features. According to some embodiments, one or more baseband power consumption modifiers occurring during an estimation window may be identified. Baseband power consumption of the wireless device during the estimation window may be estimated based on the identified baseband power consumption modifiers occurring during the estimation window. Baseband data throughput of the wireless device during the estimation window may also be estimated. One or more baseband operation characteristics may be selected based at least in part on the estimated baseband power consumption during the estimation window, possibly in conjunction with the estimated baseband data throughput during the estimation window, current wireless medium conditions, and/or other considerations.
Abstract:
A station configured to perform a method for determining a wireless property such as a channel estimate, a channel estimation track, a time tracking loop, and a frequency tracking loop. The method includes determining a set of consecutive subframes in which no transmission is scheduled, placing a processor into a first power mode during at least a portion of the set of consecutive subframes, placing the processor into a second power mode during at least another portion of the set of consecutive subframes, receiving a first reference symbol when the processor is in the second power mode and calculating a wireless property based on the first reference symbol.
Abstract:
An apparatus, system, and method optimize a manner in which carrier aggregation (CA) is used. The apparatus comprises a transceiver and processor. The transceiver is used to establish a connection with a network including first and second network components used for a CA functionality. The processor implicitly deactivates the SCell while the CA functionality is enabled by the network by determining that the CA functionality is enabled by the network, determining that the SCell is one of out-of-service (OoS) and effectively OoS when the second network component is reachable by the apparatus and a connection parameter with the second network component is below a predetermined threshold, transmitting a channel quality indicator (CQI) value of zero for the SCell to the first network component to implicitly deactivate the SCell, and utilizing a low power consumption state where monitoring of the SCell is terminated.
Abstract:
Aspects of the present invention provide apparatuses and methods for adaptive channel state feedback (CSF) estimation techniques. Downlink transmissions can be received at a mobile device. The downlink transmissions can be received after the mobile device has entered a power saving mode of operation. The downlink transmission received can be a discontinuous downlink subframe and can include one or more pilot symbols. A channel variation factor of the transmission channel can be determined based on the received downlink transmission. Based on the amount of variation of the transmission channel, either an earlier-received or a later-received pilot symbol can be used for CSF estimation. Further, either higher or lower weighted filter coefficients can be selected for use in CSF estimation based on the amount of variation of the transmission channel.
Abstract:
Apparatus, system and methods for evaluating link quality within a cellular system. A user equipment (“UE”) is connected to a network, wherein the UE communicates data to the network on an uplink (“UL”) link. The UE determines a requested buffer size for a UL communication, determines a transport block size for the UL communication based on a primary set of allocation parameters, and compares the requested buffer size to the transport block size to determine if a data rate for the UL communication satisfies a threshold. When the data rate satisfies the threshold, the UE identifies the UL link as a good quality link and sends acceptable link quality feedback to the network. When the data rate does not satisfy the threshold, the UE performs a further action to test a quality of the UL link.
Abstract:
Apparatus and methods for channel estimation in a Multimedia Broadcast Multicast Service (MBMS) Single Frequency Network (MBSFN) are disclosed. A representative method includes a wireless communication device receiving multiple frames, each frame including multiple subframes, each subframe including multiple symbols. The wireless communication device determines whether subframes include MBMS data or not. For subframes that include MBMS data, the wireless communication device excludes all or certain symbols of the subframes that include MBMS data from a channel estimation process. The wireless communication device determines whether the subframes include MBMS data based at least in part on a channel impulse response and/or a channel energy response for one or more symbols of the subframes.
Abstract:
A method for reducing power consumption by a wireless communication device is disclosed. The method can include the wireless communication device performing a first measurement of an alternative cell during a first measurement gap; sending a first measurement report generated based on the first measurement to the serving cell; storing the first measurement report; determining a mobility state of the wireless communication device; comparing the mobility state to a mobility threshold criterion; resending the first measurement report to the serving network as a report for a second measurement gap in an instance in which the mobility state satisfies the mobility criterion; and performing a second measurement of the alternative cell during the second measurement gap and sending a second measurement report generated based on the second measurement to the serving cell in an instance in which the mobility state does not satisfy the mobility threshold criterion.
Abstract:
A connection with a network that includes a base station (BS) may be established by a user device (UE) via a wireless connection, for conducting communications using semi persistent scheduling (SPS) in a connected discontinuous reception (C-DRX) mode. The SPS transmit periodicity may be adjusted with respect to the SPS activation command and the SPS interval UL (for uplink). Data may then be transmitted during the C-DRX On-Duration periods according to the determined SPS transmit periodicity. In some embodiments, the SPS transmit periodicity is adjusted such that following a first C-DRX On-Duration period when an SPS activation command is received, SPS data transmission occurs a specified number of subframes earlier during each subsequent C-DRX On-Duration period than in the first C-DRX On-Duration period. The SPS data transmission in each subsequent C-DRX On-Duration period may take place as soon as the UE device wakes up during the On-Duration period.
Abstract:
Providing adaptive channel state feedback (CSF) reports in discontinuous reception (DRX) scenarios in a power-efficient manner. The described algorithm may be able to make adaptive decisions to carry over the CSF from previous DRX cycles based on channel conditions, DRX cycle length, and/or the requirements of CSF reporting for current DRX cycle. The proposed approach can allow for more efficient power consumption related to CSF reports in DRX scenarios where new CSF reports have little or no impact to throughput.
Abstract:
Adaptive generation of channel state feedback (CSF) based on base station CSF scheduling. CSF report scheduling information may be received. CSF metrics may be generated based at least in part on the CSF report scheduling information. A CSF report including the CSF metrics may be transmitted to the base station. Periodicity of CSF report scheduling or other CSF report scheduling factors may be taken into consideration in generation of the CSF metrics.