Abstract:
In a lithographic apparatus, a reference grating 11 mounted on the wafer table WT is illuminated with a measurement beam 20 incident in a direction independent of wafer table tilt. The diffraction orders are detected by detector 30 and used to determine the lateral shift in the wafer table resulting from a non-zero Abbe arm, and hence the Abbe arm, for calibration purposes. The detector 30 may be a detector also used for off-axis alignment of the wafer and wafer table.
Abstract:
A lithographic projection apparatus includes a support structure configured to hold a patterning device, the patterning device configured to pattern a beam of radiation according to a desired pattern; a projection system configured to project the patterned beam onto a target portion of a substrate; a substrate table configured to hold the substrate, the substrate table including a support surface configured to support an intermediary plate between the projection system and at least one of the substrate and an object positioned on the substrate table and not in contact with the at least one of the substrate and the object; and a liquid supply system configured to provide a liquid, through which the beam is to be projected, in a space between the projection system and the at least one of the substrate and the object.
Abstract:
A method of determining a structural parameter related to process-induced asymmetry, the method including: illuminating a structure, having an asymmetry property and a sub-structure susceptible to process-induced asymmetry, with radiation with a plurality of illumination conditions, at a first location of a substrate, determining a difference between measured asymmetry properties of the structure obtained with each of the plurality of illumination conditions, calculating a differential dependence of a difference between modeled asymmetry properties simulated for illumination by each of the plurality of illumination conditions on a structural parameter representing process-induced asymmetry of the sub-structure, and determining a value of the structural parameter using the determined difference and the calculated differential dependence.
Abstract:
In a lithographic apparatus, a liquid supply system to provide a liquid to a space between the table and an optical element and to contact a surface of the optical element, the space having a cross-sectional area smaller than the area of the substrate, the liquid supply system comprising a liquid confinement structure extending along at least a part of a boundary of the space between the optical element surface and the table, wherein at least part of the liquid confinement structure is positioned between the optical element surface and the table, the at least part of the liquid confinement structure has an aperture through which the patterned beam can pass, the liquid confinement structure comprises an inlet to supply the liquid to the space above the aperture, and the liquid confinement structure comprises an outlet to remove the liquid, supplied by the inlet, from the space below the aperture.
Abstract:
An immersion lithography apparatus comprises a temperature controller configured to adjust a temperature of a projection system, a substrate and a liquid towards a common target temperature. Controlling the temperature of these elements and reducing temperature gradients may improve imaging consistency and general lithographic performance. Measures to control the temperature may include controlling the immersion liquid flow rate and liquid temperature, for example, via a feedback circuit.
Abstract:
A system is configured to measure two separately polarized beams upon diffraction from a substrate in order to determine properties of a grating on a substrate. Linearly polarized light sources are passed via a fixed phase retarder in order to change the phase of one of two orthogonally polarized radiation beams with respect to the other of the two beams. The relative phases of the two radiation beams and other features of the beams as measured in a detector gives rise to properties of the substrate surface. The grating and the initial linear polarization of the radiation beam are angled non-orthogonally relative to each other.
Abstract:
In a lithographic projection apparatus, a structure surrounds a space between the projection system and a substrate table of the lithographic projection apparatus. Gas is used between the structure and the surface of the substrate to contain liquid in the space.
Abstract:
In a lithographic apparatus, a localized area of the substrate surface under a projection system is immersed in liquid. The height of a liquid supply system above the surface of the substrate can be varied using actuators. A control system uses feedforward or feedback control with input of the surface height of the substrate to maintain the liquid supply system at a predetermined height above the surface of the substrate.
Abstract:
In a lithographic apparatus, a localized area of the substrate surface under a projection system is immersed in liquid. The height of a liquid supply system above the surface of the substrate can be varied using actuators. A control system uses feedforward or feedback control with input of the surface height of the substrate to maintain the liquid supply system at a predetermined height above the surface of the substrate.