Abstract:
A system for installation in a vehicle and for controlling a device, the system including a trainable transceiver, communications electronics, and a processing circuit coupled to the trainable transceiver and the communications electronics. The processing circuit is configured to train the trainable transceiver to control a device using information received from a cloud computing system remote from the device and vehicle via the communications electronics.
Abstract:
A trainable transceiver base station for controlling a remote device includes a first transceiver circuit, a power connection, and a control circuit. The first transceiver circuit is configured to transmit activation signals to the remote device, the activation signals formatted based on training information and formatted to control the remote device. The power connection is configured to receive electrical power from a vehicle. The control circuit is configured to cause the first transceiver circuit to transmit the activation signal when a command signal is received at the trainable transceiver base station. The trainable transceiver base station is located at a first location within the vehicle, and the trainable transceiver base station is configured to receive the command signal from a remote button module located at a second location within the vehicle.
Abstract:
A trainable transceiver for controlling a remote device includes a transceiver circuit configured based on training information to communicate with the remote device, a communications device configured to communicate with a mobile communications device, and a control circuit coupled to the transceiver circuit, and coupled to the communications device. The control circuit is configured to transmit diagnostic information related to the trainable transceiver to a mobile communications device via the communications device.
Abstract:
A system for installation in a vehicle and for controlling a remote device including a trainable transceiver, a camera, and a control circuit coupled to the trainable transceiver and the camera. The control circuit is configured to use the camera to identify the remote device by comparing information received via the camera to information stored in memory, and the control circuit is configured to automatically transmit an activation signal formatted to control the remote device in response to identifying the remote device.
Abstract:
A vehicle-based remote control system and method are provided herein. A first in-vehicle device and a second in-vehicle device are provided. The second in-vehicle device includes a user-input mechanism having at least one actuatable member, and a controller programmed to respond to input from the user-input mechanism. Upon actuation of the at least one actuatable member, the controller prompts the first in-vehicle device to transmit a pre-recorded user voice command assigned to the at least one actuatable member. The pre-recorded user voice command is transmitted to a server. The server processes the pre-recorded user voice command and generates a command for executing an action specified by the pre-recorded user voice command. The command is executed by one or more smart devices located remotely from a vehicle.
Abstract:
A trainable transceiver for installation in a vehicle and for controlling a remote device includes a transceiver circuit configured based on training information to communicate with the remote device, a communications device configured to communicate with a mobile communications device, and a control circuit coupled to the transceiver circuit, and coupled to the communications device. The control circuit is configured to transmit diagnostic information related to the trainable transceiver to a mobile communications device via the communications device.
Abstract:
A trainable transceiver for controlling a remote device includes a transceiver circuit configured, based on training information, to control the remote device, a communications device configured to communicate with a mobile communications device, an output device, and a control circuit coupled to the transceiver circuit, coupled to the communications device, and coupled to the output device. The control circuit is configured to receive notification information from the mobile communications device via the communications device, and wherein the control circuit is configured to generate an output using the output device based on the notification information.
Abstract:
A method for automatically transmitting an activation signal from a trainable transceiver to a remote electronic system, includes receiving, at a control circuit of the trainable transceiver, image data from an image data source; determining, using the control circuit, if the received image data matches one or more reference images stored in memory and associated with the remote electronic system; and determining, in response to a match between the received image data and the one or more reference images, if the trainable transceiver is approaching the remote electronic system. The method includes, in response to determining that the trainable transceiver is approaching the remote electronic system, formatting an activation signal to control the remote electronic system and transmitting, using a transceiver circuit, the activation signal formatted to control the remote electronic system.
Abstract:
An accessory configured to authenticate a transaction is disclosed. The accessory comprises a communication circuit configured to communicate with a transaction system. The accessory further comprises at least one data collection device and a processor. The processor is in communication with the communication circuit and the data collection device. The processor is configured to compare captured data captured by the data collection device with stored data to generate an authentication of a previously identified operator.
Abstract:
A trainable transceiver for controlling a device includes a transceiver circuit, a control circuit coupled to the transceiver circuit, and memory coupled to the control circuit. The control circuit is configured to receive a signal from the device via the transceiver circuit. The control circuit is configured to determine a frequency of a channel used by the device based on the signal strength of the signal received from the device.