Magnetostrictive stack and corresponding bit-cell

    公开(公告)号:US10998495B2

    公开(公告)日:2021-05-04

    申请号:US16329721

    申请日:2016-09-30

    Abstract: An apparatus is provided which comprises: a ferromagnetic (FM) region with magnetostrictive (MS) property; a piezo-electric (PZe) region adjacent to the FM region; and a magnetoelectric region adjacent to the FM region. An apparatus is provided which comprises: a FM region with MS property; a PZe region adjacent to the FM region; and a magnetoelectric region, wherein the FM region is at least partially adjacent to the magnetoelectric region. An apparatus is provided which comprises: a FM region with MS property; a PZe region adjacent to the FM region; a magnetoelectric region being adjacent to the FM and PZe regions; a first electrode adjacent to the FM and PZe regions; a second electrode adjacent to the magnetoelectric region; a spin orbit coupling (SOC) region adjacent to the magnetoelectric region; and a third electrode adjacent to the SOC region.

    Magneto-electric spin orbit (MESO) structures having functional oxide vias

    公开(公告)号:US10957844B2

    公开(公告)日:2021-03-23

    申请号:US16346872

    申请日:2016-12-23

    Abstract: Magneto-electric spin orbital (MESO) structures having functional oxide vias, and method of fabricating magneto-electric spin orbital (MESO) structures having functional oxide vias, are described. In an example, a magneto-electric spin orbital (MESO) device includes a source region and a drain region in or above a substrate. A first via contact is on the source region. A second via contact is on the drain region, the second via contact laterally adjacent to the first via contact. A plurality of alternating ferromagnetic material lines and non-ferromagnetic conductive lines is above the first and second via contacts. A first of the ferromagnetic material lines is on the first via contact, and a second of the ferromagnetic material lines is on the second via contact. A spin orbit coupling (SOC) via is on the first of the ferromagnetic material lines. A functional oxide via is on the second of the ferromagnetic material lines.

    CAPSULE VECTOR SPIN NEURON IMPLEMENTATION OF A CAPSULE NEURAL NETWORK PRIMITIVE

    公开(公告)号:US20200257965A1

    公开(公告)日:2020-08-13

    申请号:US16271273

    申请日:2019-02-08

    Abstract: Techniques are provided for implementing capsule neural networks (NNs) using vector spin neurons. A vector spin neuron according to an embodiment includes a first magnet, polarized in a first direction, to receive a first input current. The first input current is based on an NN input value and weighting factor. The vector spin neuron also includes a second magnet, polarized in a direction orthogonal to the first direction, to receive a second input current. The second input current is based on a second NN input value and weighting factor. The first and second magnets generate spin polarized currents. In some such embodiments, the vector spin neuron further includes a third magnet, which is unpolarized, and a conductor to couple output regions of the first and second magnets to an input region of the third magnet. The third magnet applies a non-linear activation function to the sum of the spin polarized currents.

    INSTRUCTION SET FOR HYBRID CPU AND ANALOG IN-MEMORY ARTIFICIAL INTELLIGENCE PROCESSOR

    公开(公告)号:US20200242459A1

    公开(公告)日:2020-07-30

    申请号:US16262583

    申请日:2019-01-30

    Abstract: Techniques are provided for implementing a hybrid processing architecture comprising a general-purpose processor (CPU) and a neural processing unit (NPU), coupled to an analog in-memory artificial intelligence (AI) processor. According to an embodiment, the hybrid processor implements an AI instruction set including instructions to perform analog in-memory computations. The AI processor comprises one or more layers, the NN layers including memory circuitry and analog processing circuitry. The memory circuitry is configured to store the weighting factors and the input data. The analog processing circuitry is configured to perform analog calculations on the stored weighting factors and the stored input data in accordance with the execution, by the NPU, of instruction from the AI instruction set. The AI instruction set includes instructions to perform dot products, multiplication, differencing, normalization, pooling, thresholding, transposition, and backpropagation training. The NN layers are configured as convolutional NN layers and/or fully connected NN layers.

    Programmable interface to in-memory cache processor

    公开(公告)号:US10705967B2

    公开(公告)日:2020-07-07

    申请号:US16160270

    申请日:2018-10-15

    Abstract: The present disclosure is directed to systems and methods of implementing a neural network using in-memory mathematical operations performed by pipelined SRAM architecture (PISA) circuitry disposed in on-chip processor memory circuitry. A high-level compiler may be provided to compile data representative of a multi-layer neural network model and one or more neural network data inputs from a first high-level programming language to an intermediate domain-specific language (DSL). A low-level compiler may be provided to compile the representative data from the intermediate DSL to multiple instruction sets in accordance with an instruction set architecture (ISA), such that each of the multiple instruction sets corresponds to a single respective layer of the multi-layer neural network model. Each of the multiple instruction sets may be assigned to a respective SRAM array of the PISA circuitry for in-memory execution. Thus, the systems and methods described herein beneficially leverage the on-chip processor memory circuitry to perform a relatively large number of in-memory vector/tensor calculations in furtherance of neural network processing without burdening the processor circuitry.

    Methods and apparatus to perform complex number generation and operation on a chip

    公开(公告)号:US10553268B2

    公开(公告)日:2020-02-04

    申请号:US16326308

    申请日:2016-09-30

    Abstract: Methods and apparatus for complex number generation and operation on a chip are disclosed. A disclosed logic device includes a first magnet with a first preferred direction of magnetization to polarize a spin of electrons in the first direction. The example logic device includes a second magnet with a second preferred direction of magnetization that polarizes a spin of electrons in the second direction. The example logic device includes a third magnet providing a free layer without a preferred direction of magnetization that is connected to the first and second magnets, wherein the third magnet encodes a vector based on a flux of electrons spin polarized in the first direction and a flux of electrons spin polarized in the second direction.

Patent Agency Ranking