-
公开(公告)号:US10891707B2
公开(公告)日:2021-01-12
申请号:US16377315
申请日:2019-04-08
Applicant: Intel Corporation
Inventor: Abhishek R. Appu , Altug Koker , John C. Weast , Mike B. Macpherson , Linda L. Hurd , Sara S. Baghsorkhi , Justin E. Gottschlich , Prasoonkumar Surti , Chandrasekaran Sakthivel , Liwei Ma , Elmoustapha Ould-Ahmed-Vall , Kamal Sinha , Joydeep Ray , Balaji Vembu , Sanjeev Jahagirdar , Vasanth Ranganathan , Dukhwan Kim
Abstract: A mechanism is described for facilitating inference coordination and processing utilization for machine learning at autonomous machines. A method of embodiments, as described herein, includes detecting, at training time, information relating to one or more tasks to be performed according to a training dataset relating to a processor including a graphics processor. The method may further include analyzing the information to determine one or more portions of hardware relating to the processor capable of supporting the one or more tasks, and configuring the hardware to pre-select the one or more portions to perform the one or more tasks, while other portions of the hardware remain available for other tasks.
-
公开(公告)号:US10726514B2
公开(公告)日:2020-07-28
申请号:US15581167
申请日:2017-04-28
Applicant: Intel Corporation
Inventor: Elmoustapha Ould-Ahmed-Vall , Sara S. Baghsorkhi , Anbang Yao , Kevin Nealis , Xiaoming Chen , Altug Koker , Abhishek R. Appu , John C. Weast , Mike B. Macpherson , Dukhwan Kim , Linda L. Hurd , Ben J. Ashbaugh , Barath Lakshmanan , Liwei Ma , Joydeep Ray , Ping T. Tang , Michael S. Strickland
IPC: G06T1/20 , G06F7/483 , G06N3/08 , G06F9/30 , G06N3/04 , G06N3/063 , G06F9/50 , G06F9/38 , G06N20/00 , G06F3/14 , G06T1/60 , G06T15/00
Abstract: One embodiment provides a general-purpose graphics processing unit comprising a dynamic precision floating-point unit including a control unit having precision tracking hardware logic to track an available number of bits of precision for computed data relative to a target precision, wherein the dynamic precision floating-point unit includes computational logic to output data at multiple precisions.
-
公开(公告)号:US20200226096A1
公开(公告)日:2020-07-16
申请号:US16744407
申请日:2020-01-16
Applicant: Intel Corporation
Inventor: Altug Koker , Farshad Akhbari , Feng Chen , Dukhwan Kim , Narayan Srinivasa , Nadathur Rajagopalan Satish , Liwei Ma , Jeremy Bottleson , Eriko Nurvitadhi , Joydeep Ray , Ping T. Tang , Michael S. Strickland , Xiaoming Chen , Tatiana Shpeisman , Abhishek R. Appu
Abstract: An integrated circuit (IC) package apparatus is disclosed. The IC package includes one or more processing units and a bridge, mounted below the one or more processing unit, including one or more arithmetic logic units (ALUs) to perform atomic operations.
-
公开(公告)号:US20200090022A1
公开(公告)日:2020-03-19
申请号:US16468281
申请日:2016-12-22
Applicant: INTEL CORPORATION
Inventor: Liwei Ma , Jiqiang Song , Hong Zhang
Abstract: A mechanism is described for facilitating transferring of human experiences to autonomous machines. A method of embodiments, as described herein, includes facilitating sensing, by one or more sensors, one or more inputs relating to a user, and evaluating the one or more inputs to capture one or more behavior traits of the user. The method may further include training a neural network model based on the one or more behavior traits, and applying the trained neural network model to a computing device to facilitate the computing device to adopt the one or more behavior traits to behave as the user.
-
公开(公告)号:US20190188554A1
公开(公告)日:2019-06-20
申请号:US16283021
申请日:2019-02-22
Applicant: Intel Corporation
Inventor: Liwei Ma , Elmoustapha Ould-Ahmed-Vall , Barath Lakshmanan , Ben J. Ashbaugh , Jingyi Jin , Jeremy Bottleson , Mike B. Macpherson , Kevin Nealis , Dhawal Srivastava , Joydeep Ray , Ping T. Tang , Michael S. Strickland , Xiaoming Chen , Anbang Yao , Tatiana Shpeisman , Altug Koker , Abhishek R. Appu
CPC classification number: G06N3/04 , G06N3/0445 , G06N3/0454 , G06N3/063 , G06N3/082 , G06T1/20
Abstract: Embodiments provide systems and methods which facilitate optimization of a convolutional neural network (CNN). One embodiment provides for a non-transitory machine-readable medium storing instructions that cause one or more processors to perform operations comprising processing a trained convolutional neural network (CNN) to generate a processed CNN, the trained CNN having weights in a floating-point format. Processing the trained CNN includes quantizing the weights in the floating-point format to generate weights in an integer format. Quantizing the weights includes generating a quantization table to enable non-uniform quantization of the weights and quantizing the weights from the floating-point format to the integer format using the quantization table. The operations additionally comprise performing an inference operation utilizing the processed CNN with the integer format weights.
-
公开(公告)号:US20180315159A1
公开(公告)日:2018-11-01
申请号:US15789565
申请日:2017-10-20
Applicant: Intel Corporation
Inventor: Elmoustapha Ould-Ahmed-Vall , Sara S. Baghsorkhi , Anbang Yao , Kevin Nealis , Xiaoming Chen , Altug Koker , Abhishek R. Appu , John C. Weast , Mike B. Macpherson , Dukhwan Kim , Linda L. Hurd , Ben J. Ashbaugh , Barath Lakshmanan , Liwei Ma , Joydeep Ray , Ping T. Tang , Michael S. Strickland
CPC classification number: G06T1/20 , G06F3/14 , G06F7/483 , G06F9/30014 , G06F9/30185 , G06F9/3863 , G06F9/5044 , G06N3/0445 , G06N3/0454 , G06N3/063 , G06N3/084 , G06T1/60 , G06T15/005
Abstract: One embodiment provides an accelerator module comprising a memory stack including multiple memory dies; a graphics processing unit (GPU) coupled with the memory stack via one or more memory controllers, the GPU including a plurality of multiprocessors having a single instruction, multiple thread (SIMT) architecture, the multiprocessors to execute at least one single instruction; the at least one single instruction to cause at least a portion of the GPU to perform a floating-point operation on input having differing precisions; and the floating-point operation is a two-dimensional matrix multiply and accumulate operation.
-
公开(公告)号:US20180293491A1
公开(公告)日:2018-10-11
申请号:US15482798
申请日:2017-04-09
Applicant: Intel Corporation
Inventor: Liwei Ma , Nadathur Rajagopalan Satish , Jeremy Bottleson , Farshad Akhbari , Eriko Nurvitadhi , Abhishek R. Appu , Altug Koker , Kamal Sinha , Joydeep Ray , Balaji Vembu , Vasanth Ranganathan , Sanjeev Jahagirdar
Abstract: A mechanism is described for facilitating fast data operations for machine learning at autonomous machines. A method of embodiments, as described herein, includes detecting input data to be used in computational tasks by a computation component of a compute pipeline of a processor including a graphics processor. The method may further include determining one or more frequently-used data values (FDVs) from the data, and pushing the one or more frequent data values to bypass the computational tasks.
-
-
-
-
-
-