Abstract:
A method of transmitting data in a wireless local access network, the method comprising: transmitting, by an access point, a downlink management frame to a plurality of recipients, the downlink management frame including information about a group address indicating a station group to which the plurality of recipients belongs; transmitting, by the access point, a data frame to the plurality of recipients, the data frame including the group address and a plurality of Aggregate-Medium Access Control (MAC) Protocol Data Units (A-MPDUs) for the plurality of recipients, wherein each of the plurality of A-MPDUs includes at least one MPDU for a corresponding one of the plurality of recipients, and wherein each of the plurality of A-MPDUs further includes zero or more padding bits so that all of the plurality of A-MPDUs have the same transmission time corresponding to a transmission time of a longest A-MPDU among the plurality of A-MPDUs.
Abstract:
A method for transmitting data in a wireless local area network, the method comprising: receiving, by a receiving station, a physical layer protocol data unit (PPDU) from a transmitting station, the PPDU including a signal-A field, the signal-A field including a bandwidth in which the PPDU is received, decoding the PPDU, wherein, when the PPDU is used for single-user (SU) transmission, the PPDU is decoded with assuming that the PPDU does not include a signal-B field, and, when the PPDU is used for multi-user (MU) transmission, the PPDU is decoded with assuming that the PPDU include the signal-B field, and wherein the signal-B field includes a modulation and coding scheme (MCS) used for the receiving station.
Abstract:
A method is provided for transmitting data in a wireless local area network. A transmitter generates an encoded data unit by performing a channel coding to transmission data to be included in a data field of a physical layer protocol data unit (PPDU). The transmitter generates at least one spatial block by re-arranging the encoded data unit, and divides each spatial block of at least one spatial block into two frequency segments. A bandwidth of each frequency segment is half of a bandwidth of the each spatial block. The transmitter interleaves the two frequency segments to generate a first interleaved segment and a second interleaved segment, respectively, and generates first and second mapped sequences by respectively mapping the first and second interleaved segments into a signal constellation. The transmitter performs an Inverse Discrete Fourier Transform (IDFT) on the first and second mapped sequences to generate and transmit a transmission signal.
Abstract:
A method for communicating in a wireless local area network, and a device therefore are discussed. The method according to one embodiment includes selecting, by a transmitting station, a transmission channel; and transmitting, by the transmitting station, a Physical layer Protocol Data Unit (PPDU) over the selected transmission channel to a receiving station. The transmission channel includes a primary channel and a first channel if the first channel was idle. The transmission channel includes the primary channel, the first channel and a second channel if both the first channel and the second channel were idle. The primary channel is positioned between the first channel and the second channel if the transmission channel includes the primary channel, the first channel and the second channel.
Abstract:
A method of apparatus for channel access in a wireless local area network is provided. A station receives a channel access control message including group indication information indicating a group of stations allowed to access a channel from an access point. The station attempts contention for accessing the channel if the station belongs to the group indicated by the group indication information.
Abstract:
A method is provided for accessing a channel in a wireless local area network. A device receives an operation element to set up an operating channel from an access point (AP). The operation element includes a channel type field, a first frequency segment field and a second frequency segment field. The channel type field indicates a use of two 80 MHz channels. The first frequency segment field indicates a center frequency of a primary 80 MHz channel. The second frequency segment field indicates a center frequency of a secondary 80 MHz channel. is obtained based on activities on a part of the primary 80 MHz channel. The device determines whether the secondary 80 MHz channel was idle during an interval immediately preceding the start of the TXOP only after a transmission opportunity (TXOP) is obtained.
Abstract:
A method and apparatus of accessing a channel in a wireless communication system is provided. The method includes receiving a first frame including configuration information on a channel allocated from a bandwidth including a primary channel, a secondary channel and an extension channel from an access point (AP), and transmitting a second frame to the AP by using the allocated channel. The configuration information includes an extension channel offset element field that sets the extension channel as the offset of the primary channel.
Abstract:
A method and device for receiving a data block in a wireless communication system, the method performed by a receiver. The method includes: receiving a physical layer protocol data unit (PPDU) from a transmitter over an operating channel, the PPDU including a signal field, a Very High Throughput-Signal-A (VHT-SIG-A) field, a Very High Throughput-Signal-B (VHT-SIG-B) field and a padded data block, generating a first data block by removing zero or more physical padding bits from the padded data block in a physical layer; and generating a second data block by removing zero or more Medium Access Control (MAC) padding bits from the first data block in a MAC layer.
Abstract:
A method for a channel sounding in a wireless local area network. A station receives a 20 MHz null data packet announcement (NDPA) frame and at least one duplicate 20 MHz NDPA frame. The at least one duplicate 20 MHz NDPA frame is a duplicate of the 20 MHz NDPA frame. The station also receives a null data packet (NDP) following the 20 MHz NDPA frame and the at least one duplicate 20 MHz NDPA frame. The bandwidth over which the 20 MHz NDPA frame and the at least one duplicate 20 MHz NDPA frame are transmitted is the same as a bandwidth over which the NDP is transmitted. The station transmits a report frame for the channel sounding. The 20 MHz NDPA frame and the at least one duplicate 20 MHz NDPA frame comprise bandwidth information indicating the bandwidth over which the frames are transmitted.
Abstract:
An embodiment of the present invention provides a method of controlling channel access in a WLAN system, comprising receiving, from an access point, a first channel access control message sent to stations located in some area through a directional antenna of the access point, and attempting to access a channel according to the first channel access control message. The method enables coexistence of several users and improves scalability of a wireless system.