Abstract:
Described herein are alloys comprising a poly(arylene sulfide) and a poly(aryl ketone). These alloys have a good combination of mechanical properties and unexpectedly display a higher strength than would be expected from the weight averaged constituent values.
Abstract:
A moldable and compatible blend of 5 to 95 weight percent polycarbonate comprising from about 20 weight percent to 100 weight percent of repeating units (I) having the formula ##STR1## and from 0 weight percent to about 80 weight percent of repeating units (II) having the formula ##STR2## in which the repeating units (I) and the repeating units (II) are connected by interbonding units (III) having the formula ##STR3## wherein Y is selected from alkyl groups of 1 to 4 carbon atoms, chlorine or bromine, each Z, independently, has a value of from 0 to 4 inclusive, n has a value of 0 or 1, and R.sub.1 is a divalent saturated or unsaturated aliphatic hydrocarbon radical, O, CO, SO.sub.2, S or a direct bond, with the proviso that when R.sub.1 is SO.sub.2 then repeating unit (II) is not the same as repeating unit (I), and 95 to 5 weight percent of a styrenic polymer.
Abstract:
Described herein is cookware formed from a laminate, said laminate comprising three sheets made from a thermoplastic resin, the inside sheet made from a thermoplastic resin having a higher use temperature than the two outside sheets.
Abstract:
Described herein is a composition useful for making circuit board substrates and electrical connectors comprising a blend of a poly(ether sulfone) and polysulfone. Also described herein is a circuit board substrate and an electrical connector made from such a blend.
Abstract:
Described herein are laminate compositions comprising a polyarylate, or blends thereof, derived from a dihydric phenol and an aromatic dicarboxylic acid which is laminated upon the surface of a poly(aryl ether), particularly polysulfone. In contrast to the highly ultraviolet sensitive polysulfone, the laminate compositions of this invention exhibit good weatherability including no adverse effects, e.g., degradation, from prolonged ultraviolet irradiation exposure. The laminate compositions of this invention have beneficial utility in solar energy applications.
Abstract:
Described herein are molding compositions comprising a blend of (a) a polyarylate derived from a dihydric phenol and an aromatic dicarboxylic acid and (b) an ethylene-alkyl acrylate copolymer and, optionally, at least one thermoplastic polymer. An article molded from these compositions has a good balance of mechanical properties and improved hydrolytic stability.
Abstract:
Described herein are molding compositions of blends of a poly(aryl ether) resin and a polyetherimide resin. These compositions have improved environmental stress crack resistance.
Abstract:
Described herein are molding compositions comprising a blend of a polyarylate, a polyester, and at least one thermoplastic polymer selected from the group consisting of an aromatic polycarbonate, a styrene resin, an alkyl acrylate resin, a polyurethane, a vinyl chloride polymer, a poly(aryl ether), a copolyetherester block polymer or a polyhydroxyether. These blends have excellent compatability and can be molded into a variety of articles.
Abstract:
Described herein are molding compositions of blends of a polyarylate derived from a dihydric phenol and an aromatic dicarboxylic acid, and a polyetherimide. These blends can additionally contain thermoplastic polymers which are compatible with the blend of polyarylate and polyetherimide.
Abstract:
Described herein are blends of polyarylates derived from a dihydric phenol and an aromatic dicarboxylic acid and a copolyester derived from a cyclohexanedimethanol, an alkylene glycol and an aromatic dicarboxylic acid. These blends have improved processability, weatherability and impact properties.