Abstract:
A communication system may include a first broadband wireless device and a second broadband wireless device. Signals may be wirelessly communicated from the first broadband wireless device to the second broadband wireless device at a power level that is below a spurious emissions mask. The communicated signals may be transmitted over a designated frequency band. A barrier separates the first broadband wireless device from the second broadband wireless device. The first broadband wireless device may be paired with the second broadband wireless device. Usable channels may be detected within a frequency spectrum band designated for use by the first and the second broadband wireless device. The signals may be wirelessly communicated from the first to the second broadband wireless device via one or more of the detected usable channels. Two or more of the plurality of the detected usable channels may be aggregated and utilized for the communication.
Abstract:
In an example implementation of this disclosure, a message passing low density parity check (LDPC) decoder may, during decoding of a first group of bits, lock a first variable node upon a bit-value probability of the first variable node reaching a determined threshold, and lock a first check node upon all variable nodes connected to the first check node being locked. The LDPC decoder may cease decoding the first group of bits upon all variable nodes of the LDPC decoder being locked, all check nodes of the LDPC decoder being locked, reaching a maximum number of iterations, or reaching a timeout. During a particular iteration of the decoding of the first group of bits in which the first variable node is locked, the LDPC decoder may refrain from generating a bit-value probability for the locked first variable node.
Abstract:
A satellite reception assembly that provides satellite television and/or radio service to a customer premises may comprise a wireless interface via which it can communicate with other satellite reception assemblies. Wireless connections between satellite reception assemblies may be utilized for providing satellite content between different satellite customer premises. Wireless connections between satellite reception assemblies may be utilized for offloading traffic from other network connections.
Abstract:
An Internet protocol low noise block downconverter (IP LNB) assembly, which may be within a satellite reception assembly, may be operable to determine location information and/or time information of the IP LNB assembly, such as via a global navigation satellite system (GNSS) module in the IP LNB assembly. The IP LNB assembly may provide services based on the determined location information and/or the determined time information of the IP LNB assembly. The IP LNB assembly may communicate the determined location information and/or the determined time information to a wireless communication device for determining location information of the wireless communication device. The IP LNB assembly may determine location information of a wireless source device based on a signal received from the wireless source device, the determined location information and the determined time information of the IP LNB assembly.
Abstract translation:可以在卫星接收组件内的因特网协议低噪声块下变频器(IP LNB)组件可以用于确定IP LNB组件的位置信息和/或时间信息,例如经由全球导航卫星系统(GNSS) )模块。 IP LNB组件可以基于所确定的位置信息和/或所确定的IP LNB组件的时间信息来提供服务。 IP LNB组件可以将确定的位置信息和/或所确定的时间信息传送到用于确定无线通信设备的位置信息的无线通信设备。 IP LNB组件可以基于从无线源设备接收的信号,所确定的位置信息和所确定的IP LNB组件的时间信息来确定无线源设备的位置信息。
Abstract:
A wireless communication device (WCD) establishes an ad-hoc communication link with a second WCD within operating range. A replica of at least a portion of a display of the first WCD may be shared with the second WCD utilizing wireless broadband signals that are communicated via the established one or more ad-hoc communication links. The first WCD and the second WCD are operable to communicate the wireless broadband signals at a power level that is below a spurious emissions mask. The transmitted wireless broadband signals are spread so they occupy a designated frequency spectrum band. The shared replica of at least a portion of the display of the first WCD includes one or more applications, text, video and/or data content. A user of the first WCD may interact with content that is displayed on a display of the second WCD and vice-versa.
Abstract:
A system and method in a broadband receiver (e.g., a satellite television receiver) for efficiently receiving and processing signals, substantially as shown in and/or described in connection with at least one of the figures, as set forth more completely in the claims.
Abstract:
A coupling device for use in a hybrid fiber coaxial (HFC) network may be configured to disable an upstream path through it when there is only noise incident on the upstream path, and enable the upstream path through it when a desired transmission from a cable modem downstream of the coupling device is incident on the upstream path. The coupling device may be a trunk amplifier, a distribution amplifier, a splitter, or the like. The coupling device may comprise a single upstream interface coupled to a plurality of downstream interfaces. The enabling and/or disabling may be in response to a signal strength indicated by the SSI being below a threshold and/or in response to one or more control messages indicating whether any downstream cable modem is, or will be, transmitting.
Abstract:
A system, such as a satellite reception assembly or customer premises gateway, may comprise an analog-to-digital converter operable to digitize a signal spanning an entire television spectrum (e.g., cable television spectrum or satellite television spectrum) comprising a plurality of television channels. The system may comprise a signal monitor operable to analyze a signal to determine a characteristic of the signal. The system may comprise a data processor operable to process a television channel to recover content carried on the television channel. The system may comprise a channelizer operable to select first and second portions of the signal, and concurrently output the first portion to the signal monitor and the second portion to the data processor.
Abstract:
Methods and systems for cross-protocol time synchronization may comprise, for example, in a premises-based network, receiving, by a network controller in the premises, signals that conform to a first communications protocol. The received signals may be bridged to conform to a second communications protocol different from the first communications protocol, and the bridged signals may be communicated to networked devices within the network, where only signals conforming to the second communications protocol may be concurrently communicated over the network in a frequency range of the first communications protocol and in a frequency range of the second communications protocol, the frequency range used by the first communications protocol not overlapping with the frequency range used by the second communications protocol. The first communications protocol signals may comprise data over cable service interface specification (DOCSIS) signals, cable, and/or or satellite television signals.
Abstract:
A WiFi access point (AP) includes a receive radio frequency (RF) front end and a baseband processor that controls operation of the receive RF front end. The RF front end captures signals over a wide spectrum that includes a plurality of WiFi frequency bands (2.4 GHz and 5 GHz) and channelizes one or more WiFi channels from the captured signals. The baseband processor combines a plurality of blocks of WiFi channels to create one or more aggregated WiFi channels. The receive RF front end may be integrated on a first integrated circuit and the baseband processor may be integrated on a second integrated circuit. The first and second integrated circuits may be integrated on a single package. The RF front end and the baseband processor may be integrated on a single integrated circuit. The WiFi access point comprises a routing module that is communicatively coupled to the baseband processor.