Abstract:
A measuring device (233) for monitoring movement of a first object relative to a second object, the first object or the second object including a target surface (13), comprises a first image sensor combination (236), a second image sensor combination (237), and a control system (20A). The image sensor combinations (236, 237) capture first images and second images of the target surface (13) over time. The first image sensor combination (236) includes a first image sensor (236A) and a first lens assembly (236B). The second image sensor combination (237) includes a second image sensor (237A), and a second lens assembly (237B) having a second optical axis (237BX) that is at an angle of between thirty degrees and sixty degrees relative to normal to the target surface (13). The control system (20A) analyzes the first images and the second images to monitor movement of the first object relative to the second object.
Abstract:
Two dimensional encoder system and method designed to improve accuracy, compactness, stability, resolution, and/or light efficiency of metrology carried out with such system and method. Embodiments employ a novel retroreflector which while particularly useful in present invention, is believed to have more general utility in optical imaging systems and methods.
Abstract:
Laser radar systems include a pentaprism configured to scan a measurement beam with respect to a target surface. A focusing optical assembly includes a corner cube that is used to adjust measurement beam focus. Target distance is estimated based on heterodyne frequencies between a return beam and a local oscillator beam. The local oscillator beam is configured to propagate to and from the focusing optical assembly before mixing with the return beam. In some examples, heterodyne frequencies are calibrated with respect to target distance using a Fabry-Perot interferometer having mirrors fixed to a lithium aluminosilicate glass-ceramic tube.
Abstract:
A detector (550) for detecting light (248B) from a light source (248A) comprises a single array of pixels (574) and a first mask (576). The single array of pixels (574) includes a plurality of rows of pixels (574R), and a plurality of columns of pixels (574C) having at least a first active column of pixels (574AC) and a spaced apart second active column of pixels (574AC). The first mask (576) covers one of the plurality of columns of pixels (574C) to provide a first masked column of pixels (574MC) that is positioned between the first active column of pixels (574AC) and the second active column of pixels (574AC). Additionally, a charge is generated from the light (248B) impinging on the first active column of pixels (574AC), is transferred to the first masked column of pixels (574MC), and subsequently is transferred to the second active column of pixels (574AC).
Abstract:
Fringe-projection autofocus system devoid of a reference mirror. Contributions to error in determination of a target surface profile caused by air non-uniformities measured based on multiple measurements of the target surface performed at different wavelengths, and/or angles of incidence, and/or grating pitches and subtracted from the measured profile, rendering the system substantially insensitive to presence of air turbulence. Same optical beams forming a fringe irradiance pattern on target surface are used for measurement of the surface profile and reduction of measurement error by the amount attributed to air turbulence.
Abstract:
Fringe projection autofocus systems are provided with variable pitch diffraction gratings or multiple diffraction gratings so that a reference beam and a measurement beam propagate along a common path. Alternatively, an input beam can be directed to a diffraction grating so that the selected diffraction orders propagate along a common path. In some examples, distinct spectral bands are used for reference and measurement beams.
Abstract:
A compact optical assembly for a laser radar system is provided, that is configured to move as a unit with a laser radar system as the laser radar system is pointed at a target and eliminates the need for a large scanning (pointing) mirror that is moveable relative to other parts of the laser radar. The optical assembly comprises a light source, a lens, a scanning reflector and a fixed reflector that are oriented relative to each other such that: (i) a beam from the light source is reflected by the scanning reflector to the fixed reflector; (ii) reflected light from the fixed reflector is reflected again by the scanning reflector and directed along A line of sight through the lens; and (iii) the scanning reflector is moveable relative to the source, the lens and the fixed reflector, to adjust the focus of the beam along the line of sight.