Abstract:
A method for detecting an enthalpy change includes providing a first mixture and a second mixture to a drop generator. The first mixture includes a ligand. The second mixture contains a target molecule. The method further includes generating a drop in the drop generator. The drop includes the target molecule, a temperature-sensitive reporter compound, and the ligand. The method also includes measuring a property of the temperature-sensitive reporter compound in the drop to determine an amount of enthalpy change that has occurred.
Abstract:
Embodiments are directed to a host structure that includes a waveguide configured to deliver measurement light to a compartment at least partially within the host structure. The compartment is configured to reversibly engage a fluidic optical cartridge. The host structure also includes a detector configured to receive and process output light emanating from the fluidic optical cartridge as well as electronics to process signals from the detector.
Abstract:
A device includes a spatial filter arranged in a Cartesian coordinate system having orthogonal x, y, and z axes. The spatial filter has mask features that are more light transmissive and mask features that are less light transmissive. The mask features are arranged along the x-axis in the flow direction of a flow path. A detector is positioned to detect light emanating from at least one object in the flow path, the object having a width along the y-axis, a thickness along the z-axis, and a length along the x-axis. Light emanating from the object is time modulated according to the mask features as the object moves along the flow path. The detector is configured to generate a time-varying electrical signal in response to the detected light that includes information about the width or thickness of the object.
Abstract:
Spatially modulated light emanating from an object moving along a flow path is used to determine various object characteristics including object length along the flow direction. Light emanating from at least one object moving along in a flow path along a flow direction of a spatial filter is sensed. The intensity of the sensed light is time modulated according to features of the spatial filter. A time varying electrical signal is generated which includes a plurality of pulses in response to the sensed light. Pulse widths of at least some of the pulses are measured at a fraction of a local extremum of the pulses. The length of the object along the flow direction is determined based on the measured pulse widths.
Abstract:
A filter arrangement can transmit and/or reflect light emanating from a moving object so that the emanating light has time variation, and the time variation can include information about the object, such as its type. For example, emanating light from segments of a path can be transmitted/reflected through positions of a filter assembly, and the transmission functions of the positions can be sufficiently different that time variation occurs in the emanating light between segments. Or emanating light from a segment can be transmitted/reflected through a filter component in which simpler transmission functions are superimposed, so that time variation occurs in the emanating light in accordance with superposition of two simpler non-uniform transmission functions. Many filter arrangements could be used, e.g. the filter component could include the filter assembly, which can have one of the simpler non-uniform transmission functions. Time-varying waveforms from sensing results can be compared to obtain spectral differences. The filter arrangement, in a practical commercial embodiment, can be manufactured to be disposable, and used in a point-of-care device for use practically anywhere, at low cost, and can also be implemented in an in-line monitoring system.