Abstract:
To solve a problem in that an antenna or a circuit including a thin film transistor is damaged due to discharge of electric charge accumulated in an insulator (a problem of electrostatic discharge), a semiconductor device includes a first insulator, a circuit including a thin film transistor provided over the first insulator, an antenna which is provided over the circuit and is electrically connected to the circuit, and a second insulator provided over the antenna, a first conductive film provided between the first insulator and the circuit, and a second conductive film provided between the second insulator and the antenna.
Abstract:
A flexible input/output device and an input/output device having high resistance to repeated bending are provided. The input/output device includes a first flexible substrate, a first insulating layer over the first substrate, a first transistor over the first insulating layer, a light-emitting element over and electrically connected to the first transistor and including an EL layer between first and second electrodes, a first bonding layer over the light-emitting element, a sensing element and a second transistor over the first bonding layer and electrically connected to each other, a second insulating layer over the sensing element and the second transistor, and a second flexible substrate over the second insulating layer. In the input/output device, B/A is greater than or equal to 0.7 and less than or equal to 1.7, where A is a thickness between the EL layer and the first insulating layer and B is a thickness between the EL layer and the second insulating layer.
Abstract:
In a semiconductor integrated circuit sandwiched between a pair of a first impact resistance layer and a second impact resistance layer, an impact diffusion layer is provided between the semiconductor integrated circuit and the second impact resistance layer. By provision of the impact resistance layer against the external stress and the impact diffusion layer for diffusing the impact, force applied to the semiconductor integrated circuit per unit area is reduced, so that the semiconductor integrated circuit is protected. The impact diffusion layer preferably has a low modulus of elasticity and high breaking modulus.
Abstract:
A light-emitting device includes a light-emitting element between two substrates, a terminal portion which includes at least two terminals and is electrically connected to the light-emitting element, and an adhesive layer between the two substrates. A substrate having a coefficient of thermal expansion of 10 ppm/K or lower is used as a substrate that overlaps with a terminal portion connected to an FPC.
Abstract:
A film formation apparatus that can remove a film formation material attached to a shadow mask is provided. Alternatively, a method for forming a film and a method for cleaning a shadow mask are provided. The film formation apparatus includes a film formation chamber including an evaporation source; a shadow mask transfer mechanism; and a plasma source. The shadow mask transfer mechanism includes a first mode in which a film is formed on an object to be film-formed with a film formation material ejected by the evaporation source while the object to be film-formed and a shadow mask are transferred, and a second mode in which plasma irradiation is performed by the plasma source to remove the film formation material attached to the shadow mask while the evaporation source is parted from the plasma source by a sluice valve and the shadow mask is transferred.
Abstract:
One embodiment of the present invention provides a display device from which a driver or a fellow passenger in a mobile body such as a vehicle can easily obtain desired information. One embodiment of the present invention is a display device including a display panel. The display panel is placed inside a mobile body including window glass. A film including a light-blocking layer is provided between the window glass and the display panel of the mobile body. By providing a driving unit controlling the display panel, the positional relationship between the window glass and the display panel is changed. Alternatively, by providing a driving unit controlling the film including the light-blocking layer, the positional relationship between the window glass and the film including the light-blocking layer is changed.
Abstract:
A highly reliable light-emitting device is provided. Damage to an element due to externally applied physical power is suppressed. Alternatively, in a process of pressure-bonding of an FPC, damage to a resin and a wiring which are in contact with a flexible substrate due to heat is suppressed. A neutral plane at which stress-strain is not generated when a flexible light-emitting device including an organic EL element is deformed, is positioned in the vicinity of a transistor and the organic EL element. Alternatively, the hardness of the outermost surface of a light-emitting device is high. Alternatively, a substrate having a coefficient of thermal expansion of 10 ppm/K or lower is used as a substrate that overlaps with a terminal portion connected to an FPC.
Abstract:
A display device having both a touch detection function and a function of capturing an image of a shape of a fingerprint or a vein is provided. The display device includes a first substrate, a first light-emitting element, a second light-emitting element, a light-receiving element, a light-blocking layer, a first resin layer, and a second resin layer. The first light-emitting element and the light-receiving element are arranged over the first substrate, and the first resin layer is provided over the first light-emitting element and the light-receiving element. The light-blocking layer is provided over the first resin layer, and the second light-emitting element is provided over the light-blocking layer. The second resin layer is provided over the second light-emitting layer. The first light-emitting element emits visible light upward, and the second light-emitting element emits invisible light upward. The light-receiving element is a photoelectric conversion element having sensitivity to visible light and invisible light. In a plan view, the light-blocking layer includes a portion positioned between the first light-emitting element and the light-receiving element, and the second light-emitting element overlaps with the light-blocking layer and is positioned inside the outline of the light-blocking layer.
Abstract:
A semiconductor device including a large display portion with improved portability is provided. The display device includes a first display panel, a second display panel, and an adhesive layer. The area of the second display panel is larger than the area of the first display panel. The first display panel includes a first substrate, a second substrate, and a reflective liquid crystal element and a first transistor each positioned between the first substrate and the second substrate. The second display panel includes a first resin layer having flexibility, a second resin layer having flexibility, and a light-emitting element and a second transistor each positioned between the first resin layer and the second resin layer. The liquid crystal element has a function of reflecting light toward the second substrate side. The light-emitting element has a function of emitting light toward the second resin layer side. The first substrate and part of the second resin layer are bonded to each other with the adhesive layer.
Abstract:
An object is to provide a highly reliable light emitting device which is thin and is not damaged by external local pressure. Further, another object is to manufacture a light emitting device with a high yield by preventing defects of a shape and characteristics due to external stress in a manufacture process. A light emitting element is sealed between a first structure body in which a fibrous body is impregnated with an organic resin and a second structure body in which a fibrous body is impregnated with an organic resin, whereby a highly reliable light emitting device which is thin and has intensity can be provided. Further, a light emitting device can be manufactured with a high yield by preventing defects of a shape and characteristics in a manufacture process.