Abstract:
The present invention relates to a communication technique for converging IoT technology with 5G communication systems for supporting higher data transmission rates than 4G systems and to a system therefor. The present disclosure can be applied to intelligent services (e.g., smart home, smart building, smart city, smart car or connected car, health care, digital education, retail business, security- and safety-related services, etc.) on the basis of 5G communication technology and IoT-related technology. The present invention proposes two methods, a method for resolving the congestion situation of a CN while keeping a terminal RRC-inactive and a method for resolving the congestion situation of a CN by switching a terminal to RRC-idle.
Abstract:
The disclosure relates to a communication technique for combining, with IoT technology, a 5G communication system for supporting a data transmission rate higher than that of a 4G system, and to a system therefor. The disclosure may be applied to intelligent services (e.g., a smart home, a smart building, a smart city, a smart car or connected car, healthcare, digital education, retail business, security and safety-related service, etc.), based on a 5th generation (5G) communication technology and an Internet of Things (IoT)-related technology. The disclosure discloses a method and an apparatus for providing direct communication services.
Abstract:
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services.The method includes receiving, by a vehicle to everything (V2X) layer, first information on a V2X service from a V2X application layer and determining, by the V2X layer, range information corresponding to the first information on the V2X service based on a configuration.
Abstract:
The present disclosure relates to a communication technique of fusing a 5G communication system for supporting higher data transmission rate beyond a 4G system with an IoT technology and a system thereof, and provides an intelligent service based on the 5G communication technology and the IoT related technology. A method of a terminal in a wireless communication system includes receiving, from an AMF, a first message including first information for identifying the AMF, the first information being assigned upon a successful registration to a first access; determining whether a second access is located in a same PLMN of the first access; and transmitting, to an access network entity of the second access, a second message requesting registration to the second access and including second information for identifying the AMF, in case that the second access is located in the same PLMN of the first access.
Abstract:
The disclosure relates to a communication technique and a system thereof for fusing, with IoT technology, a 5G communication system for supporting a higher data transmission rate than a 4G system. The disclosure may be applied to intelligent services (such as smart homes, smart buildings, smart cities, smart cars or connected cars, health care, digital education, retail business, and security and safety related services, etc.) on the basis of 5G communication technology and IoT related technology. The disclosure may provide a method for setting the monitoring of an application server (AS), the method comprising the steps of: transmitting, to a service capability exposure function (SCEF), a first message which comprises information on an identifier, which indicates a group including a plurality of terminals, and a waiting time and instructs to report monitoring information on the group including a plurality of terminals; and receiving, from the SCEF, a second message comprising the monitoring information on the group of a plurality of terminals.
Abstract:
First and second network nodes and methods thereof are provided. The method for the first network node to manage a second network node in a mobile communication system includes receiving, from a plurality of second network nodes, application programming interface (API) information related to each of the plurality of second network nodes, composing a plurality of second network node chainings based on the API information, selecting, when an API request is received from an external server, one of the plurality of second network node chainings for supporting the API request, and transmitting the API request to a second network node included in the selected second network node chaining.
Abstract:
The present disclosure relates to a communication scheme and system for converging a 5th generation (5G) communication system for supporting a data rate higher than that of a 4th generation (4G) system with an internet of things (IoT) technology. The present disclosure is applicable to intelligent services (e.g., smart homes, smart buildings, smart cities, smart cars, connected cars, health care, digital education, retails, and security and safety-related services) based on the 5G communication technology and the IoT-related technology. The present disclosure discloses operation methods of a terminal and a network for facilitating a 5G terminal registration procedure in a wireless communication system.
Abstract:
An electronic device and sound output method thereof are provided. The electronic device may include: an input unit comprising input circuitry configured to sense an input from outside of the electronic device; a plurality of piezo drivers including a first piezo driver and a second piezo driver; and a processor functionally connected with the input unit. The processor may be configured to detect an input through the input unit, to use a first piezo driver set including the first piezo driver to output sounds when the detected input corresponds to a first input, and to use a second piezo driver set including the second piezo driver to output sounds when the detected input corresponds to a second input.
Abstract:
The inventive concepts relate to nonvolatile memory devices. The nonvolatile memory devices may include a memory cell array, and a page buffer circuit connected to the memory cell array through bit lines. The page buffer circuit may comprise a substrate, bit line selection transistors on the substrate and connected to respective ones of the bit lines, and latches on the substrate connected to the bit line selection transistors through lines. The lines may be on a first plane above and parallel to a top surface of the substrate, and may be connected to respective ones of the bit line selection transistors through first contacts. The bit lines may be on a second plane above and parallel to a top surface of the substrate, and may be connected to respective ones of the bit line selection transistors through second contacts.
Abstract:
The disclosure relates to a method and apparatus for monitoring and changing information about quality of service (QoS) allowed to be supported to a user equipment (UE) in a mobile communication system, and an operating method of a target base station (BS) in the mobile communication system includes receiving, from a source BS, alternative quality of service (QoS) profile (AQP) information, determining whether information matching QoS information allowed to be supported for a UE to be served is included in the AQP information, and when the information matching the QoS information allowed to be supported for the UE to be served is included in the AQP information, transmitting the matching information to an access and mobility management function (AMF).