Abstract:
A method of manufacturing a semiconductor device is provided, which includes the steps of providing a capacitor structure, forming a conductive layer on the capacitor structure, performing a hydrogen doping process to the conductive layer, forming a metal layer on the conductive layer after the hydrogen doping process, and patterning the metal layer and the conductive layer to forma top electrode plate.
Abstract:
A semiconductor structure for preventing row hammering issue in DRAM cell is provided in the present invention. The structure includes a trench with a gate dielectric, an n-type work function metal layer, a TiN layer conformally formed within, and a buried word line filled in the trench.
Abstract:
A semiconductor process for forming a plug includes the following steps. A dielectric layer having a recess is formed on a substrate. A titanium layer is formed to conformally cover the recess. A first titanium nitride layer is formed to conformally cover the titanium layer, thereby the first titanium nitride layer having first sidewall parts. The first sidewall parts of the first titanium nitride layer are pulled back, thereby second sidewall parts being formed. A second titanium nitride layer is formed to cover the recess. Moreover, a semiconductor structure formed by said semiconductor process is also provided.
Abstract:
A method of fabricating a bottom electrode includes providing a dielectric layer. An atomic layer deposition is performed to form a bottom electrode material on the dielectric layer. Then, an oxidation process is performed to oxidize part of the bottom electrode material. The oxidized bottom electrode material transforms into an oxide layer. The bottom electrode material which is not oxidized becomes a bottom electrode. A top surface of the bottom electrode includes numerous hill-like profiles. Finally, the oxide layer is removed.
Abstract:
A semiconductor structure for preventing row hammering issue in DRAM cell is provided in the present invention. The structure includes a trench with a gate dielectric, an n-type work function metal layer, a TiN layer conformally formed within, and a buried word line filled in the trench.
Abstract:
A method for modulating a work function of a semiconductor device having a metal gate structure including the following steps is provided. A first stacked gate structure and a second stacked gate structure having an identical structure are provided on a substrate. The first stacked gate structure and the second stacked gate structure respectively include a first work function metal layer of a first type. A patterned hard mask layer is formed. The patterned hard mask layer exposes the first work function metal layer of the first stacked gate structure and covers the first work function metal layer of the second stacked gate structure. A first gas treatment is performed to the first work function metal layer of the first stacked gate structure exposed by the patterned hard mask layer. A gas used in the first gas treatment includes nitrogen-containing gas or oxygen-containing gas.
Abstract:
A method of forming a contact structure is provided. A silicon-containing substrate is provided with a composite dielectric layer formed thereon. An opening penetrates through the composite dielectric layer and exposes a portion of the source/drain region. A titanium nitride layer is formed in the opening, and the titanium nitride layer is in contact with the exposed portion of the source/drain region. The titanium nitride layer is annealed, so that the bottom portion of the titanium nitride layer is partially transformed into a titanium silicide layer. A conductive layer is formed to fill up the opening.
Abstract:
The present invention provides a metal gate structure which is formed in a trench of a dielectric layer. The metal gate structure includes a work function metal layer and a metal layer. The work function metal layer is disposed in the trench and comprises a bottom portion and a side portion, wherein a ratio between a thickness of the bottom portion and a thickness of the side portion is between 2 and 5. The trench is filled with the metal layer. The present invention further provides a method of forming the metal gate structure.
Abstract:
A method of manufacturing a semiconductor device is provided. The method includes the following steps. A substrate including a first transistor having a first conductivity type, a second transistor having a second conductivity type and a third transistor having the first conductivity type is formed. An inner-layer dielectric layer is formed on the substrate, and includes a first gate trench corresponding to the first transistor, a second gate trench corresponding to the second transistor and a third gate trench corresponding to the third transistor. A work function metal layer is formed on the inner-layer dielectric layer. An anti-reflective layer is coated on the work function metal layer. The anti-reflective layer on the second transistor and on the top portion of the third gate trench is removed to expose the work function metal layer. The exposed work function metal layer is removed.
Abstract:
A semiconductor device having metal gate includes a substrate, a first metal gate positioned on the substrate, and a second metal gate positioned on the substrate. The first metal gate includes a first p-work function metal layer, an n-work function metal layer, and a gap-filling metal layer. The second metal gate includes a second p-work function metal layer, the n-work function metal layer, and the gap-filling metal layer. The first p-work function metal layer and the second p-work function metal layer include a same p-typed metal material. A thickness of the first p-work function metal layer is larger than a thickness of the second p-work function metal layer. The first p-work function metal layer, the second p-work function metal layer, and the n-work function metal layer include a U shape.