Abstract:
Methods, systems, and techniques for the contactless operation of capacitive micromachined ultrasonic transducers (CMUTs) and CMUT arrays. Contactless operations refers to both the contactless transfer of energy and information between the transducer(s) and the controlling subsystem. A system includes a CMUT, a first alternating current voltage source, a first inductor electrically coupled to the first voltage source, and a second inductor electrically coupled to the CMUT. The second inductor is physically decoupled from, and positioned to be wirelessly coupled to, the first inductor. A contactless configuration is useful for a wide range of applications, from wearable transducers to high-end ultrasound imaging systems.
Abstract:
Devices for providing an acoustic wave to a target location include at least one transducer device and at least one beam-forming processor to cause the at least one transducer device to produce a first acoustic wave, the first acoustic wave includes a plurality of pulses having a pulse repetition frequency, where a pulse width of each pulse is in a range of 10 ns to 10 μs and the pulse repetition frequency is in a range of 1 Hz to 50 Hz, receive data associated with a second acoustic wave, wherein the second acoustic wave is a reflection of the first acoustic wave, determine a characteristic of the second acoustic wave, and determine whether to change a beam path of an acoustic wave produced by the at least one transducer device based on the characteristic of the second acoustic wave. Methods and computer program products are also disclosed.
Abstract:
An ultrasound diagnostic apparatus of the present invention includes: a transmitter that generates and outputs a plurality of drive signals to a transducer of an ultrasound probe, the drive signals causing the transducer to transmit a plurality of transmission ultrasound waves that have different waveforms in a temporally shifted manner, the drive signals being compensated for asymmetry of the transmission sound pressure waveforms of the plurality of transmission ultrasound waves transmitted from the transducer; and a hardware processor configured to extract a harmonic component according to a plurality of reception signals, and generating an ultrasound image based on the extracted harmonic component.
Abstract:
An ultrasound transducer array is provided that comprises a plurality of CMUT (capacitive micromachined ultrasound transducer) cells (100), each CMUT cell comprising a substrate (300) carrying a first electrode (110) of a first electrode arrangement, the substrate being spatially separated from a flexible membrane including a second electrode (120) of a second electrode arrangement by a gap (130), at least one of the first electrode and the second electrode being electrically insulated from said gap by at least one dielectric layer (311, 313), wherein at least one of the first electrode arrangement and the second electrode arrangement is partitioned into a plurality of sections interconnected by respective fuse portions (112, 122). An ultrasound probe and an ultrasound system comprising such an ultrasound transducer array are also disclosed.
Abstract:
A signal generator generates an electrical signal that is sent to an amplifier, which increases the power of the signal using power from a power source. The amplified signal is fed to a sender transducer to generate ultrasonic waves that can be focused and sent to a receiver. The receiver transducer converts the ultrasonic waves back into electrical energy and stores it in an energy storage device, such as a battery, or uses the electrical energy to power a device. In this way, a device can be remotely charged or powered without having to be tethered to an electrical outlet.
Abstract:
An ultrasonic measuring apparatus includes an ultrasonic transducer device having a substrate and an ultrasonic transducer element array that has a first channel group and a second channel group that are arranged on the substrate, a first integrated circuit apparatus that is mounted on the substrate, at one edge portion of the ultrasonic transducer element array in a first direction, such that a long-side direction coincides with a second direction that intersects the first direction, and performs at least one of signal transmission to the first channel group and signal reception from the first channel group, and a second integrated circuit apparatus that is mounted on the substrate, at the other edge portion of the ultrasonic transducer element array in the first direction, such that the long-side direction coincides with the second direction, and performs at least one of signal transmission to the second channel group and signal reception from the second channel group. In the ultrasonic transducer element array, the first group of channels and the second group of channels are arranged alternately every channel in the second direction.
Abstract:
The present invention relates to a driver device (40) for driving a load (52) having a plurality of separate capacitive load elements (52), in particular an ultrasound transducer having a plurality of transducer elements (52), comprising: input terminals (44, 46) for connecting the driver device (40) to power supply (48); a plurality of output terminals (50) each for connecting the driver device (40) to one of load elements (52), a first controllable switch (54) connected to a first of the input terminals (44), and a plurality of driving elements (42) each having a second controllable switch (60) and a resistor (58) connected in series to each other, wherein each of the driving elements (42) is connected in series with the first controllable switch (54) and to a second of the input terminals (46), and wherein each of the output terminals (50) is connected to one of the driving elements (42) for powering the load elements (52).
Abstract:
The electronic device is arranged for generation of an audible alarm or music. It includes a coil or inductor and a buzzer provided with a capacitor connected in series with the coil. When the electronic device is actuated, the buzzer generates the audible alarm or music. The electronic device further includes, in a feedback loop, a derivative circuit connected to a connection node between the coil and the capacitor, to produce a derivative of the signal from the capacitor, and a comparator for comparing a derivative signal from the derivative circuit with a reference voltage. The comparator supplies an output signal to the coil to amplify the signal across the capacitor, so that the buzzer generates at least one audible alarm.
Abstract:
Methods and apparatus for ultrasound imaging using ultrasound sensor elements comprising thin film transistors. Specifically, ultrasound elements for use in a two dimensional array of ultrasound elements, two dimensional arrays of ultrasound elements, ultrasound sensor element array assemblies, ultrasound imaging devices and methods of performing an ultrasound scan using a two dimensional array of ultrasound elements. A sensor element comprises: an ultrasound transducer, a transmit circuit configured to provide an electrical signal to the transducer for output of an ultrasound signal; and a receive circuit configured to receive an electrical signal from the transducer, based on a received reflected ultrasound signal, wherein the transmit and receive circuits each comprise one or more thin film transistors.
Abstract:
An apparatus for driving a two-dimensional transducer array, a medical imaging system and a method of driving a two-dimensional transducer array are provided. An apparatus for driving a two-dimensional (2D) transducer array including one or more transducers includes one or more drivers configured to respectively drive the transducers, each of the drivers including a register, a comparator, a pulse frequency setter, a multi-pulse controller, a transmission signal generator, a signal transceiver, a transmission and reception switch, and a reception signal amplifier, and a driving controller configured to control the drivers.