Abstract:
A package structure and method of packaging for an interferometric modulator. A thin film material is deposited over an interferometric modulator and transparent substrate to encapsulate the interferometric modulator. A gap or cavity between the interferometric modulator and the thin film provides a space in which mechanical parts of the interferometric modulator may move. The gap is created by removal of a sacrificial layer that is deposited over the interferometric modulator.
Abstract:
A multilayered integrated optical and circuit device. The device has a first substrate comprising at least one integrated circuit chip thereon, which has a cell region and a peripheral region. Preferably, the peripheral region has a bonding pad region, which has one or more bonding pads and an antistiction region surrounding each of the one or more bonding pads. The device has a second substrate with at least one or more deflection devices thereon coupled to the first substrate. At least one or more bonding pads are exposed on the first substrate. The device has a transparent member overlying the second substrate while forming a cavity region to allow the one or more deflection devices to move within a portion of the cavity region to form a sandwich structure including at least a portion of the first substrate, a portion of the second substrate, and a portion of the transparent member. The one or more bonding pads and the antistiction region are exposed while the one or more deflection devices is maintained within the portion of the cavity region.
Abstract:
A method of fabricating a MEMS device includes the formation of support posts having horizontal wing portions at the edges of the post. A mechanical layer is deposited over the support posts and portions of the mechanical layer overlying portions of the support post other than the horizontal wing portions are etched away. A resultant MEMS device includes a mechanical layer overlying at least a portion of the horizontal wing portions of the underlying support structures.
Abstract:
Methods for filtering particles from a fluid are disclosed, wherein an array of microstructures defining respective microchannels having respective minimum widths are used to separate the fluid from particles to be filtered. The fluid flows through the minimum widths into the microchannels defined between adjacent microstructures. The particles to be filtered are prevented from passing through the respective minimum widths, resulting in filtration of those particles from the fluid. The microchannels can be provided with gradient characteristics to separate particles in the fluid according to size.
Abstract:
Described are MEMS mirror arrays monolithically integrated with CMOS control electronics. The MEMS arrays include polysilicon or polysilicon-germanium components that are mechanically superior to metals used in other MEMS applications, but that require process temperatures not compatible with conventional CMOS technologies. CMOS circuits used with the polysilicon or polysilicon-germanium MEMS structures use interconnect materials that can withstand the high temperatures used during MEMS fabrication. These interconnect materials include doped polysilicon, polycides, and tungsten metal.
Abstract:
An electronic device of an embodiment of the invention is disclosed that at least partially displays a pixel of a display image. The device includes a first reflector and a second reflector defining an optical cavity therebetween that is selective of a visible wavelength at an intensity. The device includes a mechanism to allow optical properties of the cavity to be varied such that the visible wavelength and/or the intensity are variably selectable in correspondence with the pixel of the displayable image. The device also includes one or more transparent deposited films, one or more absorbing layers, an integral micro-lens, and/or one or more anti-stiction bumps. The deposited films are over one of the reflectors, for self-packaging of the device. The absorbing layers are over one of the reflectors, to reduce undesired reflections. The integral micro-lens is over one of the reflectors, and the anti-stiction bumps are between the reflectors.
Abstract:
A heterogeneous device comprises a substrate and a plurality of heterogeneous circuit devices defined in the substrate. In embodiments, a plurality of heterogeneous circuit devices are integrated by successively masking and ion implanting the substrate. The heterogeneous device may further comprise at least one microelectromechanical system-based element and/or at least one photodiode. In embodiments, the heterogeneous circuit devices comprise at least one CMOS transistor and at least one DMOS transistor. In embodiments, the substrate comprises a layer of silicon or a layer of p-type silicon. In other embodiments, the substrate comprises a silicon-on-insulator wafer comprising a single-crystal-silicon layer or a single-crystal-P-silicon layer, a substrate and an insulator layer therebetween.
Abstract:
A package structure and method for packaging a MEMS device is described. In one embodiment, the MEMS base device can include a substrate having a MEMS device formed thereon, a backplate, an exposed or activated desiccant disposed between the backplate and the transparent substrate, and a cover at least partially encapsulating said desiccant. In another embodiment, a MEMS display device can be manufactured by contacting the substrate and/or backplate with a cover which at least partially encapsulates a desiccant, joining the backplate and the substrate to form a package, and exposing or activating the desiccant.
Abstract:
A structure of a micro electro mechanical system and a manufacturing method are provided, the structure and manufacturing method is adapted for an optical interference display cell. The structure of the optical interference display cell includes a first electrode, a second electrode and posts. The second electrode comprises a conductive layer covered by a material layer and is arranged about parallel with the first electrode. The support is located between the first plate and the second plate and a cavity is formed. In the release etch process of manufacturing the structure, the material layer protects the conductive layer from the damage by an etching reagent. The material layer also protects the conductive layer from the damage from the oxygen and moisture in the air.
Abstract:
A process produces microelectromechanical components from a substrate that has a first side and a second side which is substantially opposite from the first side, and at least the first side has at least one microelectromechanical element. The process includes the step of providing at least one conductive passage into the substrate, connecting the first side to the second side, and securing at least one support to the first side of the substrate, with the at least one electrically conductive passage uncovered by thinning the substrate material with the mechanical stability being ensured by the support.