Electrostatically driven comb structure of MEMS, micro-mirror using same and preparation method therefor

    公开(公告)号:US12054387B1

    公开(公告)日:2024-08-06

    申请号:US18044571

    申请日:2022-07-15

    Abstract: Disclosed are an electrostatically driven comb structure of an MEMS (Micro Electro Mechanical System), a micro-mirror using the same, and a preparation method therefor. The surface of a comb of the electrostatically driven comb structure of the MEMS has an insulating layer, and the insulating layers on the surfaces of adjacent combs are the same type of insulating layers or different insulating layers; the micro-mirror with the electrostatically driven comb structure of the MEMS successively includes a substrate, an isolating layer and a device layer from bottom to top; the method for manufacturing the micro-mirror prepares the insulating layers by high temperature oxidization, plasma enhanced chemical vapor deposition, low pressure chemical vapor deposition, atmospheric pressure chemical vapor deposition, physical deposition, atomic layer deposition or stepwise heterogeneous deposition; same or different insulating layers are obtained on the surfaces of the driving comb and the ground comb; when the driving comb and the ground comb adsorb each other, the insulating layers on the surfaces of the two contact without forming a short circuit, so that a good insulating effect is achieved. The electrostatically driven MEMS micro-mirror capable of preventing adsorptive damage provided by the present invention features compact structure and simple process.

    MEMS DEVICE COMPRISING A DEFORMABLE STRUCTURE AND MANUFACTURING PROCESS OF THE MEMS DEVICE

    公开(公告)号:US20240010489A1

    公开(公告)日:2024-01-11

    申请号:US18341565

    申请日:2023-06-26

    Abstract: A MEMS device comprising: a semiconductor body defining a main cavity and forming an anchorage structure; and a first deformable structure having a first end and a second end that are opposite to one another along a first axis, the first deformable structure being fixed to the anchorage structure via the first end so as to be suspended over the main cavity. The second end is configured to oscillate, with respect to the anchorage structure, along a second axis. The first deformable structure comprises a main body having a first outer surface and a second outer surface, and a piezoelectric structure, which extends over the first outer surface. The main body comprises a bottom portion and a top portion that delimit along the second axis a first buried cavity aligned with the piezoelectric structure along the second axis, wherein a maximum thickness of the top portion of the main body along the second axis is smaller than a minimum thickness of the bottom portion of the main body along the second axis.

    Method for manufacturing thin-film support beam

    公开(公告)号:US09862595B2

    公开(公告)日:2018-01-09

    申请号:US15023057

    申请日:2014-12-04

    Inventor: Errong Jing

    Abstract: A method for manufacturing a film support beam includes: providing a substrate having opposed first and second surfaces; coating a sacrificial layer on the first surface of the substrate, and patterning the sacrificial layer; depositing a dielectric film on the sacrificial layer to form a dielectric film layer, and depositing a metal film on the dielectric film layer to form a metal film layer; patterning the metal film layer, and dividing a patterned area of the metal film layer into a metal film pattern of a support beam portion and a metal film pattern of a non-support beam portion, wherein a width of the metal film pattern of the support beam portion is greater than a width of a final support beam pattern, and a width of the metal film pattern of the non-support beam portion is equal to a width of a width of a final non-support beam pattern at the moment; photoetching and etching on the metal film layer and the dielectric film layer to obtain the final support beam pattern, the final non-support beam pattern and a final dielectric film layer, wherein the final dielectric film layer serves as a support film of the final support beam pattern and the final non-support beam pattern; and removing the sacrificial layer.

Patent Agency Ranking