Abstract:
This invention relates to a novel ozone generator device for the production of high concentrations of ozone by way of a design that permits a process environment that is consonant with the optimum values of hardware and operating variables that thermodynamically favor the production of ozone. The device is characterized by a small corona chamber resulting in a low oxygen retention time, a thermally conductive ducted core permitting circulation of a coolant for cooling the feed oxygen and produced ozone, a spherical corona chamber and electrode geometry promoting a homogeneous high electric field density, operating pressures as high as 2000 psi, free expansion cooling of the oxygen at both the inlet and outlet ports of the device, and the selection of an electrode that ensures the production and maintenance of a homogeneous corona. Also disclosed is a closed-loop ozone generator system wherein unused feed oxygen is recovered and recycled for further processing by the system. Uses of the ozone generator device of this invention is more diverse than uses described in the background by virtue of the increased ozone production of the device over the background art, and includes remediation of biofoulants, biocontaminants, chlorine, chloramines and organic contaminants from drinking and process water, and the removal of sulfur dioxide and nitrogen dioxide from flue gases.
Abstract:
A rotary ozonizer has a base, a disk-shaped stationary electrode mounted on the base, and a rotary electrode unit disposed over the stationary electrode in face-to-face relation to form an electric discharge clearance. The rotary electrode unit comprises a plurality of radially outwardly extending arms, and upstanding blades fixed to the radially outer portions of the arms, respectively. When the rotary electrode unit is rotated about a vertical axis by a motor and a high voltage is applied between the electrode and electrode unit, an electric discharge takes place to ozonize the oxygen in said electric discharge clearance, and the thus produced ozone is supplied by the blades out of the ozonizer.
Abstract:
A method of treating liquid waste with ozone by passing the liquid to be treated between complementary horizontal electrodes having therebetween electrically conductive particles so as to form an electrode bed, pulsing air simultaneously with said liquid, and maintaining between said electrodes an electrical potential so that as the air and liquid pass through said electrode bed, the bed expands to establish electrical contact between the electrodes thus to create localized arcing between particles in the bed and to form ozone.
Abstract:
A cell or apparatus for treating a fluid by electron emission as the fluid is passed through a space between a dielectric layer located on a surface of a first electrode and a second electrode and as the electrodes are operated by an attached, appropriate circuit to cause electron emission within the space can be constructed so as to improve the efficiency of the cell or apparatus and so as to promote the amount of time which the dielectric layer may be used without breakdown. In constructing a cell or apparatus for this purpose cooling jackets are provided for circulating cooling fluids in contact with the surfaces of these electrodes remote from one another. In accordance with the disclosure the pressures of the fluids used in the cooling jackets and the fluid passing through the space of the apparatus or cell are regulated so as to maintain the electrical characteristics of the cell or apparatus substantially constant. This improves the efficiency of the circuit used to power the cell. In achieving such regulation the pressures are also preferably regulated so that there is substantially no deflection or movement of the dielectric layer. This minimizes the chances of such dielectric layer breaking down.
Abstract:
The invention provides a method and apparatus for generating large quantities of singlet oxygen and/or ozone at unexpectedly high efficiencies. An electron beam generated by a hollow cathode plasma discharge device (HCD) is spread by disclosed means over an electron-transmissive window past which is flowing an oxygen-containing atmosphere at a high velocity.
Abstract:
The disclosed system functions to generate ozone with improved efficiency. Oxygen gas is passed through an electric field, and while in the field is irradiated with brief bursts of high energy electrons. This produces a large number of secondary electrons in the gas and these electrons taken energy from the electric field. The secondary electrons efficiently dissociate oxygen molecules from the gas, thereby producing oxygen atoms which immediately combine with oxygen to form ozone. The electric field is pulsed on during the electron beam irradiation, and thereafter pulsed off in order to maximize energy deposition by electrons and minimize energy deposition by ions. The disclosed system may also be used to generate other substances in gas phase ionic or free-radical reactions in which a suitable gas or mixture of gases is passed through the discharge and made to react in it. For example, the system can be used to produce hydrogen peroxide or hydrazine from suitable gas mixtures of H2O + O2 and NH3 + N2, respectively.
Abstract:
Ozone is produced from air or oxygen by passing the same through a channel defined by a first pair of electrodes of opposite polarity and a second pair of such electrodes, the electrodes of the second pair being covered with a dielectric layer, and respective high voltage sources being connected to the electrodes of both pairs.
Abstract:
APPARATUS AND METHOD ARE DISCLOSED FOR HIGH EFFICIENCY ELECTRICAL CONVERSION OF OXYGEN TO OZONE. AN OXYGEN-CONTAINING GAS IS PASSED UPWARDLY THROUGH A PARTICULATE DIELETRIC CONTAINED BETWEEN SPACED ELECTRODE SURFACES, WHEREBY A FLUIDIZED BED IS ESTABLISHED CONSISTING OF A SUSPENSION OF SAID DIELECTRIC PARTICLES IN THE STREAMING GAS. MEANS ARE PRESENT FOR SIMULTANEOUSLY MAINTAINING A SILENT ELECTRICAL DISCHARGE ACROSS THE SPACED ELECTRODES AND THROUGH THE FLUIDIZED BED. THE BED ACTS AS A HIGHLY EFFECTIVE HEAT SINK AND ALSO PROMOTES THE PRESNECE OF HIGH-FREQUENCY COMPONENTS IN THE CURRENT WAVES PASSING BETWEEN ELECTRODES, AS A RESULT OF WHICH INCREASED ELECTRICAL EFFICIENCY AND INCREASED OZONE OUTPUT IS ENABLED IN THE CONVERSION PROCESS.
Abstract:
The apparatus of the present invention is adapted to produce an efficient reaction between a gas and a nongaseous substance at relatively low ambient temperatures. The gas flows through a chamber containing the nongaseous substance and is subjected to an RF field. A passive resonant circuit is linked by the field through the medium of the gas. Exciting the gas in this way, produces a marked increase in the reaction rate.
Abstract:
A continuous reaction is effected in a gas stream by an electric discharge at a point in the stream where the flow has been made supersonic and the pressure and temperature lowered by a substantially adiabatic expansion. Various forms of apparatus for carrying out such a process are described. The apparatus may be used for the production of ozone which is used to convert ethylene and tetramethyl-ethylene fed into the apparatus into the corresponding ozonides. On leaving the apparatus the ozonides are converted in the presence of water into formaldehyde and acetone respectively.ALSO:A continuous reaction is effected in a gas stream by an electric discharge at a point in the stream where the flow has been made supersonic and the pressure and temperature lowered by a substantially adiabatic expansion. One form of apparatus, Fig. 1, comprises a supersonic nozzle 1, a pressure reducing chamber 17 for starting the action of the nozzle and a recompression chamber 13. Gas from an inlet pipe 6 passes along a cylindrical chamber 5 to a convergent part 2 of the nozzle 1 and then expands in a divergent part 4. A hollow electrode 8 supported by insulators 9 and 10 in the chamber 5 produces a discharge at the outlet 7 of the nozzle 1. The recompression chamber 13 comprises a convergent part 14, a cylindrical part 15 and a divergent part 16. This apparatus may be used for the production of acetylene and hydrogen from methane gas, or for the cracking of other hydrocarbons. An alternative form of apparatus is described in which the electrode 8 is extended to the part 16 of the chamber 13 and is closed at the end, but is provided with side vents for the injection of methane into the part 15 of the chamber 13. Two discharges are set up, the first at the end of the nozzle 1 for producing ozone, and the second in the chamber 13 for partially oxidizing the methane.