Abstract:
Conditioning system for a sterilization device, comprising a cooling system, at least one gas flow and a heat exchange unit, wherein the at least one gas flow is adapted to adjust the temperature of ambient gas around the sterilization device, wherein the cooling system comprises at least one medium flow, and wherein the at least one medium flow is adapted to cool and/or heat the at least one sterilization device, wherein the heat exchange unit is adapted to provide a heat exchange between the at least one medium flow and the at least one gas flow.
Abstract:
A non-mechanical contact signal measurement apparatus includes a first conductor on a structure under test and a gas in contact with the first conductor. At least one electron beam is directed into the gas so as to induce a plasma in the gas where the electron beam passes through the gas. A second conductor is in electrical contact with the plasma. A signal source is coupled to an electrical measurement device through the first conductor, the plasma, and the second conductor when the plasma is directed on the first conductor. The electrical measurement device is responsive to the signal source.
Abstract:
The invention relates to a pumped electron source (1) that includes an ionization chamber (4), an acceleration chamber (2) with an electrode (3) for extracting and accelerating primary ions and forming a secondary-electron beam, characterized in that the pumped electron source (1) includes a power supply (11) adapted for applying to the electrode (3) a positive voltage for urging a primary plasma (17) outside the acceleration chamber (2), and a negative voltage pulse for extracting and accelerating the primary ions and forming a secondary-electron beam.
Abstract:
An apparatus (1) for sterilizing containers (10), comprising a treatment head (5) which has an exit window (8) through which charge carriers can pass, comprising a charge carrier generation source which generates charge carriers, and comprising an acceleration device (6) which accelerates the charge carriers in the direction of the exit window (8). According to the invention, the cross section of the treatment head (5) is dimensioned such that the treatment head (5) can be guided through the mouth of the container (10), and the acceleration device (6) accelerates the charge carriers in such a way that the charge carriers exiting from the exit window (8) can be aimed preferably directly onto an inner wall (15) of the container (10).
Abstract:
A filament for generating electrons for an electron beam emitter where the filament has a cross section and a length. The cross section of the filament is varied along the length for producing a desired electron generation profile.
Abstract:
By using a large area cathode, an electron source can be made that can irradiate a large area more uniformly and more efficiently than currently available devices. The electron emitter can be a carbon film cold cathode, a microtip or some other emitter. It can be patterned. The cathode can be assembled with electrodes for scanning the electron source.
Abstract:
An electron accelerator includes a vacuum chamber having an electron beam exit window. The exit window is formed of metallic foil bonded in metal to metal contact with the vacuum chamber to provide a gas tight seal therebetween. The exit window is less than about 12.5 microns thick. The vacuum chamber is hermetically sealed to preserve a permanent self-sustained vacuum therein. An electron generator is positioned within the vacuum chamber for generating electrons. A housing surrounds the electron generator. The housing has an electron permeable region formed in the housing between the electron generator and the exit window for allowing electrons to accelerate from the electron generator out the exit window in an electron beam when a voltage potential is applied between the housing and the exit window.
Abstract:
A data reduction system for real time monitoring of radiation machinery measures the bremsstrahlung flux produced by the electron beam used to generate the desired radiation, and then corrects the measurement by corrective signals derived from the determination of other parameters, such as the energy of the electrons, the velocity of the product irradiated, the temperature of the device which measures the flux, and differences in sensitivity between a plurality of devices which measure the spacial and temporal distribution of the flux.
Abstract:
An electron beam source or generator is described for the treatment of materials, such as toxics, as influent in a reaction chamber. Preferred embodiments of the system include a source of an oxidizing agent in fluid communication with the influent. The oxidizing agent together with a dose of electron beam promotes reaction of the contaminant into less toxic forms so as to provide greatly enhanced destruction of contaminant that are otherwise resistant to oxidizing reactions.
Abstract:
The invention is a transportable and reconfigurable system and method designed for on-site conversion of toxic substances to nontoxic forms. The invention includes an electron beam generator, a reaction chamber and effluent post-processing modules mounted on a carrier for transporting the system from site to site.