Abstract:
The rope of this invention comprises a plurality of strands each having a twisted reinforcing fiber bundle, thermosetting resin applied to the fiber bundle, and a thermoplastic resin cover enclosing the fiber bundle. Each strand in the rope is kept to substantially a round sectional shape by the twisted fiber bundle.The method for forming the rope comprises the steps of twisting the reinforcing fibers in such a manner that the tensile strength of the twisted fibers is not reduced to less than 50% of the fibers not twisted, applying an uncured thermosetting resin to the twisted fibers, covering the fibers with a molten thermoplastic resin, cooling the thermoplastic resin to cover the fibers with solidified thermoplastic resin and thereby forming a strand, forming a rope structure from a plurality of the strands, and heating the rope structure to cure the thermosetting resin applied on the fibers.
Abstract:
A conveyor belt of elastomeric material, especially natural and synthetic rubber material, with thread-shaped strength members extending in the longitudinal direction of the belt and being located in parallel spaced relationship to each other while being embedded in the elastomeric material of the belt, the strength members being in the form of wires united to each other by a single twist.
Abstract:
A cable for reinforcing objects formed of elastic or easily deformable material, such as automobile tires and conveyor belts, has as conventional components a core and at least one peripheral layer surrounding the core, each component being formed of elements, such as individual wires or strands of wires. The resistance of such a reinforcing cable to fatigue and/or to wear is increased due to the fact that at least two consecutive components in contact with each other in radial direction are constituted of elements made of material having moduli of elasticity which differ from one component to the other.