Abstract:
The present invention is to provide a hybrid core rope which does not require maintenance or a hybrid core rope capable of reducing a maintenance task. The hybrid core rope includes a resin solid core in which a plurality of spiral grooves is formed in the longitudinal direction on an outer peripheral surface thereof, a plurality of fiber bundles respectively spirally wound around the outer peripheral surface of the resin solid core along the plurality of spiral grooves, the fiber bundles having thickness to fill the spiral grooves, and a plurality of steel strands spirally wound around the outer peripheral surface of the resin solid core around which the fiber bundles are wound. The fiber bundles and the strands are respectively wound so as to have angles which are not parallel to each other.
Abstract:
A flexible member, comprising: an inner core member, comprising a plurality of strands of liquid crystal polymers cooperating with each other to define and provide the inner core member; an outer sheath disposed about the inner core member, the outer sheath defining an inner opening for receiving the inner core member therein, the inner core member being slidably received within the outer sheath, wherein the flexible member is capable of being disposed about a curved surface, wherein a lubricant is disposed upon an exterior surface of the outer sheath and the outer sheath further comprises an end-fitting member disposed about a portion of the flexible connector, the portion of the flexible connector comprising an engagement surface for securement of the end fitting thereto.
Abstract:
A conveyor belt of elastomeric material, especially natural and synthetic rubber material, with thread-shaped strength members extending in the longitudinal direction of the belt and being located in parallel spaced relationship to each other while being embedded in the elastomeric material of the belt, the strength members being in the form of wires united to each other by a single twist.
Abstract:
An improved top down furling system includes one or more improved components. A lower rotary drive unit with a rotary tack swivel rotates against a fixed portion of the furler, or is configured to permit routing of the tack line below the unit. The system may include an anti-torsion cable constructed in a manner so as to be able to transmit torque without excessive tension applied to the cable. The system also may include an end terminal of the anti-torsion cable having a quick side mount or bayonet type connection to the rotary drive unit.
Abstract:
A tyre for motorcycles includes a carcass structure, a belt structure arranged in a radially outer position with respect to the carcass structure and a tread band arranged in a radially outer position with respect to the belt structure. The belt structure is of the zero degree type and includes at least one reinforcing cord including a core made of non metal material, and a plurality of metal wires substantially parallel to one another and helically wound around the core with a predetermined winding pitch. The metal wires are in such a number as to not completely surround the core. In particular, the metal wires are arranged around the core so that, in any cross-section of the reinforcing cord, they are located at just an angular portion of an ideal circumference that circumscribes the core.
Abstract:
Disclosed is a method for producing a high strength synthetic strength member (7) containing rope (1) capable of being used with powered blocks where such rope has lighter weight and similar or greater strength than steel wire strength member containing ropes used with powered blocks. Disclosed also is the product resulting from such method. The product includes a synthetic strength member, a first synthetic portion (9) and a second synthetic portion. The first synthetic pillion is enclosed within the strength member and the second synthetic portion is situated external the strength member. At least a portion of the second synthetic portion also is situated internal a sheath (8) formed about the strength member. The second synthetic portion has a minimal of 8% at a temperature of between negative 20 and negative 15° C.
Abstract:
In an elevator wire rope 1 structured by twisting a plurality of schenkels 3, each schenkel 3 being formed by twisting a plurality of strands 2, each strand 2 being formed by twisting a plurality of fine steel wires 2a to 2g, the interior of the wire rope being filled with a resin 4, and the surface of the wire rope being covered with a resin 5, wherein the direction in which the fine steel wires 2a to 2g and the strands 2 are twisted and the direction in which the schenkels 3 are twisted are mutually opposite, and the diameter d4 of the inscribed circle of the plurality of twisted schenkels 3 is smaller than the diameter d2 of the schenkel 3.
Abstract:
With a wire rope comprising at least one plastic core (11) and a number of wire strands (15) twisted around the latter a helical groove (20) is respectively produced by machining around the periphery of the plastic core (11) for each wire strand (15). The cross section of these helical grooves (20) is respectively matched to the outside diameter of the wire strands (15). The plastic core (11) is provided with the helical grooves (20) for receiving the wire strands (15) by this machining directly before the wire strands (15) are wound onto said core. By thus forming the wire rope by means of this machining in order to produce helical grooves of the plastic core, optimal guiding of the wire strands in the twisted state is achieved, and so overall there are improvements to the properties of the wire rope.
Abstract:
Disclosed is a method for producing a high strength synthetic strength member (7) containing rope (1) capable of being used with powered blocks where such rope has lighter weight and similar or greater strength than steel wire strength member containing ropes used with powered blocks. Disclosed also is the product resulting from such method. The product includes a synthetic strength member, a first synthetic portion (9) and a second synthetic portion. The first synthetic portion is enclosed within the strength member and the second synthetic portion is situated external the strength member. At least a portion of the second synthetic portion also is situated internal a sheath (8) formed about the strength member. The second synthetic portion has a minimal of 8% at a temperature of between negative 20 and negative 15° C.
Abstract:
Synthetic fiber rope for a crane, include a central strand having an inner core made of a synthetic resin and an inner cover made of synthetic fibers and connected to the inner core via braiding, a plurality of outer strands each of which includes an outer core made of a synthetic resin and an outer cover made of synthetic fibers and connected to the outer core via twisting and which are connected to the outer surface of the central strand via braiding, and a jacket made of synthetic fibers and braided to cover the surface of the plurality of outer strands. Method of manufacturing a synthetic fiber rope is also disclosed.