Abstract:
A timing arrangement for an internal combustion engine includes a timing connection having first and second connection features, each of which include respective properties wherein the second property is greater than the first property. A first timing wheel is fixed for rotation with a crankshaft of the engine. The first timing wheel includes first and second adjacent teeth, wherein the first and second adjacent teeth respectively include first and second widths, which correspond to the first and second connection features, respectively.
Abstract:
An electromechanical VVA system for controlling the poppet valves in the cylinder head of an internal combustion engine. The system varies valve lift, duration, and phasing in a dependent manner for one or more banks of engine valves. A rocker subassembly for each valve or valve pair is pivotably disposed on a control shaft between the camshaft and the roller finger follower. The control shaft may be displaced about a pivot axis outside the control shaft to change the angular relationship of the rocker subassembly to the camshaft, thus changing the valve opening, closing, and lift. A plurality of control shafts for controlling all valvetrains in an engine bank defines a control shaft assembly. The angular positions of the individual control shafts may be tuned to optimize the valve timing of each cylinder. The system is applicable to the intake and exhaust camshafts of diesel and gasoline engines.
Abstract:
A phase control valve, which supplies a drive hydraulic pressure to an advance chamber or a retard chamber, is integrated with a drain switch valve, which controls opening and closing of an advance drain control valve and opening and closing of a retard drain control valve, to form a solenoid spool valve. The advance drain control valve is provided in an advance check valve bypass passage, which bypasses an advance check valve, and is driven by a pilot hydraulic pressure to open and close the advance check valve bypass passage. The retard drain control valve is provided in a retard check valve bypass passage, which bypasses a retard check valve, and is driven by a pilot hydraulic pressure to open and close the retard check valve bypass passage.
Abstract:
A valve timing control apparatus includes a driving side rotational member, a driven side rotational member arranged coaxially to the driving side rotational member, a fluid pressure chamber defined into an advanced angle chamber and a retarded angle chamber, a relative rotational phase adjusting mechanism controlling to selectively supply and drain a working fluid to and from the advanced angle chamber and the retarded angle chamber and adjusting a relative rotational phase of the driving side rotational member and the driven side rotational member, and a valve mechanism provided at the advanced angle chamber and establishing communication between an outside of the fluid pressure chamber and the advanced angle chamber in order to allow the driven side rotational member to advance when a fluctuated torque generated at a camshaft exceeds a torque applied to the driven side rotational member by the relative rotational phase adjusting mechanism.
Abstract:
In a case of switching the control mode between the reference timing control mode and the F/B control mode, when an engine speed is grater than or equal to a predetermined speed, and when target advanced amount of intake valve timing is lower than a switching threshold (vicinity of the most retarded timing), an intake VCT is switched into the reference timing control mode. And when engine speed is more than the predetermined rotating speed, and when the target retarded amount of exhaust valve timing is less than the switching threshold (vicinity of the most advanced timing), an exhaust VCT is switched to the reference timing control mode.
Abstract:
Rotary valve system for controlling communication with a port in an internal combustion engine which, in one disclosed embodiment, has a crankshaft, compression and expansion pistons connected to the crankshaft for reciprocating movement within compression and expansion chambers, a combustion chamber in which air from the compression chamber is combined with fuel and burned to produce an increased gas volume. The valve system has an outer valve member which is rotatively mounted in a bore and has an opening which moves into and out of communication with the port as the outer valve member rotates, an inner valve member rotatably mounted within the outer valve member with an opening at least partly overlapping the opening in the outer valve member, a flange extending along one edge of the opening in the inner valve member and through the opening in the outer valve member for sealing engagement with the wall of the bore, and means for effecting rotation of the valve members to change the degree of overlap between the openings and thereby control the timing and duration of communication between the openings and the port.
Abstract:
In valve control apparatus for an internal combustion engine and its assembling method, a positioning section is interposed between a predetermined position of a housing member at which a shoe is positioned so as to be opposed against a side surface of a vane in which a lock piston is arranged and one of a front cover and a rear plate on which a lock hole is formed, to perform a housing circumferential directional positioning of the lock piston and the lock hole.
Abstract:
A variable cam timing phaser including a housing, a rotor coaxially located within the housing, a phase control valve, a switching valve, and a passage connecting the first advance and retard chambers. The housing and the rotor define at least two chambers, a first chamber separated by a first vane into the first advance and retard chambers, and a second chamber separated by a second vane into the second advance and retard chambers. The switching valve has a first position in which fluid may flow freely between the passage connecting the first advance and retard chambers and fluid flow from the phase control valve to the first advance and first retard chambers is blocked. In the second position, the passage connecting the first advance and retard chambers is blocked and fluid may flow freely between the phase control valve and the first advance and first retard chambers.
Abstract:
A sprocket (3A, 3B) is fixed onto a crank shaft (2) projecting outward from a cylinder block (1) of an internal combustion engine (100). A timing chain (7A, 7B) is looped around the sprocket (3A, 3B). A slippage prevention mechanism (10) which prevents slippage of the timing chain (7A, 7B) with respect to the sprocket (3A, 3B) comprises an arm (10C) extending from a base portion (10A) fixed to the cylinder block. A slippage prevention rail (10B) in the form of an arc-shaped recess is formed on the arm (10C) so as to face the engaging part between the sprocket (3A, 3B) and the timing chain (7A, 7B) with a clearance smaller than the height of a tooth of the sprocket (3A, 3B) therebetween. The slippage prevention rail (10B) thus constructed does not interfere with other members fixed onto the crank shaft (2).
Abstract:
An engine is described having two camshafts 14, 16 each of which carries two groups of cams and comprises an inner shaft coupled for rotation with a first group of cams and an outer tube rotatably supported by the inner shaft and coupled for rotation with the second group of cams. A phaser 12 is provided to enable the phase of at least one of the two groups of cams on one of the SAP camshafts 14, 16 to be varied with reference to the phase of the engine crankshaft. Drive links in the form of meshing gear wheels, drive chains or belts, couple the two corresponding groups of cams on the respective camshafts for rotation in unison with one another.