Abstract:
There is provided a high-pressure dome type compressor which comprises a motor using a rare earth magnet and has stable performance. There are provided a compression element 3 and a DC motor 5 for driving the compression element 3 in a casing 2. The motor 5 is disposed in a high pressure area 6, which obtains a high temperature and high pressure due to a discharged gas. The motor 5 includes a rare earth/iron/boron permanent magnet having an intrinsic coercive force of 1.7 MA/mnull1 or greater in a rotor and has a rated output or 1.9 kW or higher. An inverter 10 controls a current to be supplied to the motor 5 such that a temperature of the motor 5 becomes equal to a predetermined temperature or lower and that an opposing magnetic field generated in a stator of the motor 5 has a predetermined strength or less. Therefore, since the rare earth magnet of the motor 5 does not obtain a high temperature and is not exposed to a strong opposing magnetic field, the magnet is hardly demagnetized. Thus, performance of the motor 5 and further performance of the high-pressure dome type compressor 1 become stable.
Abstract:
A multishaft electric motor has a plurality of juxtaposed rotors having respective permanent magnets disposed therearound, and a plurality of sets of armature elements disposed fully circumferentially around the rotors, respectively, the permanent magnets of adjacent two of the rotors having a plurality of pairs of unlike magnetic poles for magnetically coupling the rotors through the armature elements between the permanent magnets. A positive-displacement vacuum pump includes a casing, a pair of pump rotors rotatably disposed in the casing in confronting relation to each other, and a two-shaft electric motor coupled to the pump rotors for rotating the pump rotors in opposite directions. The two-shaft electric motor may comprise a pair of juxtaposed rotors and a pair of sets of armature elements disposed fully circumferentially around the rotors, respectively.
Abstract:
A diagnostic system includes a controller adapted for coupling to a compressor or electronic stepper regulator valve. The controller produces a variable duty cycle control signal to adjust the capacity of the compressor or valve position of the electronic stepper regulator valve as a function of demand for cooling. The diagnostic system further includes a diagnostic module coupled to the controller for monitoring and comparing the duty cycle with at least one predetermined fault value indicative of a system fault condition and an alert module responsive to the diagnostic module for issuing an alert signal when the duty cycle bears a predetermined relationship to the fault value.
Abstract:
An air-conditioner, an outdoor unit and an refrigeration device each using a refrigeration cycle which can reduce power consumption so as to be highly efficient, which can be operated by a commercially available power source, and which is highly reliable. An air-conditioner comprises a motor and a refrigeration cycle including a compressor driven by the motor, an outdoor heat-exchanger and an indoor heat-exchanger, the motor being located in a motor chamber within a closed container, and refrigerant gas in the refrigeration cycle flows through the motor chamber, wherein the motor has a core of a rotor in which a cage type conductor and permanent magnets magnetized in bipolar state are embedded, and said motor is driven by a commercially available electric power source.
Abstract:
An electric compressor includes a motor and a compression mechanism that is driven by the motor. The compressor forms part of the refrigerant circuit of an air conditioner. A control apparatus of the compressor adjusts the rotation speed of the motor for controlling the amount of compressed refrigerant gas discharged from the compression mechanism, or the displacement of the compressor, per unit time. When the energy efficiency of the motor is lower than a predetermined level, the control apparatus performs on-off control by alternately turning off the motor. During the on-off control, a required amount of refrigerant gas discharged per unit time is obtained, and the energy efficiency of the motor in the on time is higher than the predetermined level.
Abstract:
An evacuating apparatus having a high energy efficiency when the suction side pressure has reached the ultimate pressure or become a certain degree of vacuum, by decreasing the motive power owing to differential pressure. The evacuating apparatus (100) having a roughing vacuum pump (B) and a booster pump (A), each of which is constituted by a screw vacuum pump, wherein the design pumping speed of the roughing vacuum pump (B) is sufficiently smaller than the design pumping speed of the booster pump (A), but adequate to be operable as the roughing vacuum pump, and the number of turns of screw for the booster pump (A) is less than the number of turns of screw for the roughing vacuum pump (B).
Abstract:
A scroll compressor assembly includes a first linear drive for driving a first scroll along a first linear axis and a second linear drive for driving the first or second scroll along a second linear axis which is non-parallel to the first linear axis. Relative orbital movement between the first and second scrolls is obtained by controlling the frequency of oscillations of the first linear motor along a first linear axis and the second linear motor along the second linear axis. Further, capacity control is achieved by varying the movement of the first and second linear motors.
Abstract:
A refrigerating unit capable of optimum operation with respect to load by finely changing the operating capacity in response to changes in load, and offering energy saving effects. The refrigerating unit has a scroll type inverter-driven compressor and scroll type constant-speed compressors; a pressure sensor installed on the suction side; a circuit for starting the inverter-driven compressor first; and a circuit for deciding the driving frequency of the compressor and the number of constant-speed compressors to operate, based on a suction pressure value detected by the pressure sensor after the compressor was started.
Abstract:
A scroll-type machine is disclosed which is particularly well suited for use as a compressor in refrigeration and air conditioning systems and incorporates a unique arrangement for modulating the capacity thereof. In one group of embodiments the capacity of the scroll-type machine is modulated by relative axial movement between the scroll members so as to form a leakage path across the wrap tips and opposed end plates. In another group of embodiments, modulation is achieved by reducing the orbital radius of one of the scroll members to thereby form a leakage path across the flank surfaces of the wraps. In the second group, a plurality of pin members are moveable from a first and second positions. In a first position the plurality of pin members operably enable the scroll members to orbit and in a second position the pin members restrict the orbiting motion of the first scroll members. Both types of scroll separation may be accomplished in a time pulsed manner to thereby enable a full range of modulation with the duration of the loading and unloading periods being selected to maximize the efficiency of the overall system. A motor control arrangement is also disclosed which may be used with either of the modulation methods mentioned above to increase the efficiency of the motor during periods of reduced load. Additionally, either of the modulation arrangements mentioned above may be combined with a delayed suction form of capacity modulation with or without the motor control feature to thereby achieve better operating efficiency under certain conditions.
Abstract:
A scroll-type machine is disclosed which is particularly well suited for use as a compressor in refrigeration and air conditioning systems and incorporates a unique arrangement for modulating the capacity thereof. In one group of embodiments the capacity of the scroll-type machine is modulated by relative axial movement between the scroll members so as to form a leakage path across the wrap tips and opposed end plates. In another group of embodiments, modulation is achieved by reducing the orbital radius of one of the scroll members to thereby form a leakage path across the flank surfaces of the wraps. Both types of scroll separation may be accomplished in a time pulsed manner to thereby enable a full range of modulation with the duration of the loading and unloading periods being selected to maximize the efficiency of the overall system. A motor control arrangement is also disclosed which may be used with either of the modulation methods mentioned above to increase the efficiency of the motor during periods of reduced load. Additionally, either of the modulation arrangements mentioned above may be combined with a delayed suction form of capacity modulation with or without the motor control feature to thereby achieve better operating efficiency under certain conditions.