Abstract:
Provided are intervertebral disk nucleus pulposus stem cells or progenitor cells that may be used for treatment of intervertebral disk disorders. An intervertebral disk nucleus pulposus cell is characterized by being isolated from the intervertebral disk nucleus pulposus of a vertebrate and is positive for at least one surface marker from among Tie2 and GD2. That is, the intervertebral disk nucleus pulposus stem cell is characterized by being at least Tie2-positive for the surface marker and) possesses a self-renewal ability as well as multipotency capable of differentiating into adipocytes, osteocytes, chondrocytes and neurons. Also provided is an intervertebral disk nucleus pulposus progenitor cell characterized by being at least Tie2-negative and GD2-positive for the surface marker and capable of differentiating into any of adipocytes, osteocytes, chondrocytes and neurons.
Abstract:
This invention provides a hydrophilic membrane wherein a hydrophilic cellulose derivative of a number average molecular weight of 2000˜8000 is adsorbed irreversibly to a hydrophobic membrane of an aromatic polymer. Since an amount of leaching substances is extremely small, the membrane can be used suitably in such fields as medical applications, electronics, etc. where even a quite small quantity of leaching substances from the membranes is limited especially small.
Abstract:
A linear motion apparatus is comprised of: a toothed rail (40); a linearly driving mechanism section (50) having a plurality of swinging plates (53), crankshafts (54, 55), and a casing (51); and guiding means for guiding the casing (51) relatively movably with respect to the toothed rail (40). The casing (51) includes: a pair of side portions (61, 62) which are guided by the guiding means on both sides, in a tooth width direction, of the rail (40); a pair of end plate portions (63, 64) which are located on opposite sides, as viewed in a longitudinal direction of the rail (40), of the swinging plates (53) and connect opposite end portions of the pair of side plate portions (61, 62); and a coupling member (521) which is located between the plurality of crankshafts (54, 55) as viewed in the longitudinal direction of the rail and couple intermediate portions of the pair of side plate portions (61, 62). The coupling member (521) is preferably passed through the swinging plates (53). The linear motion apparatus is compact and low-cost, and capable of maintaining a stable state of meshing between swinging plates and a toothed rail even if a compact casing is adopted.
Abstract:
A mutual exclusion control is performed with dynamically, allocated lock variables. A lock request circuit issues a lock acquisition request or an unlock request. A lock identifying information holding circuit holds an identifying information related to a currently valid lock. A lock identifying information comparing circuit judges whether or not a lock identifying information from the lock request circuit is included in the lock identifying information holding circuit. A lock identifying information updating circuit updates the lock identifying information holding circuit on the basis of the request from the lock request circuit.
Abstract:
A nucleic acid-containing complex, containing a nucleic acid and a biodegradable polymer, especially a positively-charged water-insoluble biodegradable polymer, is disclosed. The complex has excellent properties of sustainedly releasing a desired nucleic acid, especially DNA, to a site in need of a treatment. Since the complex can be taken up to phagocytes such as macrophages and delivered specifically to the target site, the function of the nucleic acid can be exhibited in a target site specific manner, and thus more specific gene therapy can be achieved. The complex has no adverse effects, such as occurrence of recombinants or toxicity which could be caused by using a virus vector such as adenovirus, or liposome. Thus, the complex is particularly preferable for the field of gene therapy. Furthermore, the complex enhances the biological effect of the nucleic acid introduced into the cells, allowing a gene therapy with a lower dose of nucleic acids.
Abstract:
The present invention provides a vacuum system including a vacuum pump capable of operating at a rotation rate controlled appropriately when a predetermined process is performed in a vacuum chamber, which contributes to energy conservation. The vacuum system serves as a semiconductor manufacturing system comprising a vacuum pump controller which has a gas flow mode and an auto-tuning mode for determining a rotation rate of a vacuum pump unit to set the rotation rate to a target value lower by a predetermined value than the full operation rate of gas flow rate control means under the condition that pressure within the process chamber is vacuum pressure necessary for the gas flow mode. The vacuum pump controller has means for reducing the rotation rate of the vacuum pump unit from a rated rotation rate in the auto-tuning mode under the condition that pressure within the process chamber is vacuum necessary for the gas flow mode, to determine whether or not the operation rate of an APC valve reaches a target value, and means for storing, as the rotation rate necessary for the gas flow mode, the rotation rate of the vacuum pump unit, which is obtained when it is determined that the operation rate of the APC valve reaches the target value.
Abstract:
The present invention relates to a method for diagnosing leukemia, pre-leukemia or aleukemic malignant blood diseases, a method of discriminating leukemia from pre-leukemia or aleukemic malignant blood diseases, a method of discriminating aplastic anemia from myelodysplastic syndrome, a method of diagnosing delayed engraftment of the hematopoietic stem cells after transplantation of the hematopoietic stem cells, and a method of diagnosing the graft versus host disease, each of said methods comprising quantifying stem cell growth factor (SCGF). The present invention also makes it possible to provide an agent for diagnosing leukemia, pre-leukemia or aleukemic malignant blood diseases and an agent for diagnosing delayed engraftment of the hematopoietic stem cells after transplantation of the hematopoietic stem cells or an agent for diagnosing graft versus host disease (GVHD), each containing as an active ingredient an antibody reacting with stem cell growth factor (SCGF).
Abstract:
The present invention provides an immunodeficient mouse (NOG mouse) suitable for engraftment, differentiation and proliferation of heterologous cells, and a method of producing such a mouse. This mouse is obtained by backcrossing a C.B-17-scid mouse with an NOD/Shi mouse, and further backcrossing an interleukin 2-receptor γ-chain gene-knockout mouse with the thus backcrossed mouse. It is usable for producing a human antibody and establishing a stem cell assay system, a tumor model and a virus-infection model.
Abstract:
The present invention relates to a method for diagnosing leukemia, pre-leukemia or aleukemic malignant blood diseases, a method of discriminating leukemia from pre-leukemia or aleukemic malignant blood diseases, a method of discriminating aplastic anemia from myelodysplastic syndrome, a method of diagnosing delayed engraftment of the hematopoietic stem cells after transplantation of the hematopoietic stem cells, and a method of diagnosing the graft versus host disease, each of said methods comprising quantifying stem cell growth factor (SCGF). The present invention also makes it possible to provide an agent for diagnosing leukemia, pre-leukemia or aleukemic malignant blood diseases and an agent for diagnosing delayed engraftment of the hematopoietic stem cells after transplantation of the hematopoietic stem cells or an agent for diagnosing graft versus host disease (GVHD), each containing as an active ingredient an antibody reacting with stem cell growth factor (SCGF).
Abstract:
A method for creating a monkey model of spinal cord injury, which includes exposing the dura mater of the cervical cord of a monkey and applying a load on the dura mater; the thus-created monkey model of spinal cord injury; and a method for evaluating a therapeutic drug for spinal cord injury by use of this model. According to the present invention, it is possible to create a monkey which is close to the human and thus useful as a model of human spinal cord injury. This model enables proper evaluation of therapeutic effects of various drugs on spinal cord injury. Through use of this model, it has been confirmed for the first time that transplantation therapy of human neural stem cells is efficacious against spinal cord injury.