Abstract:
A liquid crystal panel and a liquid crystal display are disclosed. Stray backlights which are irradiated into areas of gate electrode circuits are absorbed by adding an anisotropic absorbing material into a mixture for forming a color filter layer and then controlling orientation of the anisotropic absorbing material to reduce the stray backlights entering into the gate electrode circuits, so that a better shading effect for the gate electrode circuits is provided.
Abstract:
This disclosure provides a display substrate, a display device and a manufacturing method thereof, and belongs to the field of display technologies. The display substrate comprises a base plate, and a blue light inhibition layer arranged on the base plate, wherein the blue light inhibition layer weakens a portion of blue light emitted by a light source. In this disclosure, by forming a blue light inhibition layer in the existing process for manufacturing a display device, it is unnecessary to significantly modify the manufacturing process, and thus the problem of blue light harm in a display device is solved in a simple and cost effective manner.
Abstract:
Provided is an electrophoresis display apparatus in which light is unlikely to be reflected by a partition wall part and which realizes high contrast. An electrophoresis display apparatus 1 is provided with a first base member 8 on which a semiconductor elements 9c are arranged, a second base member 16 facing the first base member 8, and partition walls 5 that are positioned between the first base member 8 and the second base member 16 and partition pixel regions 6, and has a reflection reduction film 7 that reduces light reflection in a location facing the partition walls 5, as viewed from a second base member 16 side.
Abstract:
The present invention provides a backlight module and a liquid crystal display device using the backlight module. The backlight module includes a backplane (2), a light guide plate (4) arranged in the backplane (2), a backlight source (6) arranged in the backplane (2) at one side of the light guide plate (4), a light shielding film (8) mounted on the light guide plate (4) and the backplane (2) and located above the backlight source (6), and an optic film assembly (10) arranged on the light shielding film (8) and the light guide plate (4). The light shielding film (8) has an end fixedly connected to an upper surface of the light guide plate (4) and an opposite end fixedly connected to the backplane (2). The present invention provides an arrangement of a light shielding film above the backlight source to effectively prevent light leaking and enhance the optic quality of the backlight module. Further, a light shielding section of the light shielding film is arranged to be extendable so as to effectively prevent shifting of the light shielding film resulting from an external force acting thereon during the transportation thereof thereby further effectively preventing the occurrence of light leaking and being helpful for bezel slimming of the liquid crystal display device.
Abstract:
A night vision imaging system (NVIS) compatible liquid crystal display (LCD) includes a backlight and an LCD panel. The LCD panel includes a color filter including a plurality of colored pixels. Each of the colored pixels in the plurality of colored pixels incorporates a near infrared (NIR) filter, capable of substantially blocking emissions from the backlight, including NIR emission between 650 nm and 930 nm, while maintaining high transmission of bands of visible light for producing a full color visual image.
Abstract:
A display device includes a display panel, a protective member, a light guide member, a light source, and a light leakage preventing member. The display device includes a display surface concavely curved in a first direction. The light leakage preventing member is coupled to the protective member to be movable according to expansion or contraction of the light guide member. The light leakage preventing member contracts and expands according to the expansion or contraction of the light guide member, and includes an elastic part to prevent the light source from being damaged by the expansion of the light guide member.
Abstract:
Light emitted by a backlight can be prevented from leaking through a chamfered portion of a front window of a liquid crystal display device.An upper polarizing plate is bonded over the counter substrate, and a front window is bonded over the upper polarizing plate with a UV-curable resin adhesive. The front window is chamfered and a light shielding member is formed on the chamfered portion. The UV adhesive exists between the chamfered portion and the surface of the upper polarizing plate or the counter substrate, and an outer end of the polarizing plate exists at a point outer than an outer end of the front window. Since the light shielding member for the chamfered portion is formed, light from the backlight does not penetrate from the chamfered portion. Thus, light leakage at a periphery of a screen can be prevented even when the view angle is large.
Abstract:
A planar illumination device includes a light source unit, including a substantially planar emitting surface, configured to emit light to illuminate a substantially planar object, and a frame, formed in a frame shape enclosing the light source unit, disposed on an outer circumferential side of the light source unit, configured to hold the light source unit. The frame includes a reflecting part configured to reflect the light, and an absorbing part, formed integral with at least a part of an outer circumferential surface of the reflecting part, configured to absorb the light. The reflecting part and the absorbing part include joint interface therebetween that is inclined to a direction vertical to the emitting surface.
Abstract:
A transflective display includes a substrate, a partially absorbing layer arranged on the substrate, a reflection layer arranged on the partially absorbing layer opposite to the substrate, and an emissive layer arranged on the reflection layer opposite to the partially absorbing layer. The emissive layer includes a plurality of light-emitting elements that emit light of at least one color and a dye of a color other than the at least one color of the plurality of light-emitting elements. The reflection layer is arranged to reflect some light from the emissive layer back into the emissive layer.
Abstract:
An optical waveguide device is provided which can efficiently guide undesired light to the outside of a substrate or the outside of the overall optical waveguides even when optical waveguides are integrated. In the optical waveguide device, an optical waveguide is formed on a substrate, the optical waveguide includes a main waveguide in which signal light propagates and an undesired-light waveguide for removing undesired light from the main waveguide, and the undesired-light waveguide is separated by the main waveguide interposed therebetween at an intersection in which the undesired-light waveguide and the main waveguide intersect each other.