Abstract:
Systems and methods for cloud-based surveillance are disclosed. At least one mobile Input Capture Device (ICD) and the at least one computing device are communicatively connected to the cloud-based analytics platform. The at least one mobile ICD captures and transmits input data to the cloud-based analytics platform. The cloud-based analytics platform processes and analyzes input data from the at least one mobile ICD; and generates commands and updates to the at least one mobile ICD based on the processing and analyzing of the input data. Authorized users are operable to access to the cloud-based analytics platform via a user interface over the at least one computing device.
Abstract:
An autonomous vehicle including a chassis, a conveyance system carrying the chassis, and a controller configured to steer the conveyance system. The controller is further configured to execute the steps of receiving steering radius information from a source; and creating steering instructions for the vehicle dependent upon the steering radius information from the source. The source not being from the vehicle itself.
Abstract:
A method of operating a robot includes electronically receiving images and augmenting the images by overlaying a representation of the robot on the images. The robot representation includes user-selectable portions. The method includes electronically displaying the augmented images and receiving an indication of a selection of at least one user-selectable portion of the robot representation. The method also includes electronically displaying an intent to command the selected at least one user-selectable portion of the robot representation, receiving an input representative of a user interaction with at least one user-selectable portion, and issuing a command to the robot based on the user interaction.
Abstract:
Provided is a throw-type compact reconnaissance robot, which is used for military purposes or counter-terrorism and is capable of ensuring a long operational time as well as drop safety by efficient spatial layout of a battery. The throw-type compact reconnaissance robot includes a cylindrical body (100) with a camera (140), drivers (200) made up of two tires (270) that are disposed on opposite sides of the body (100) and is drivable individually, and battery units (300) supplying power used to operate the robot and disposed in inner spaces of the tires (270) of the drivers (200) on the opposite outermost sides of the robot.
Abstract:
The invention relates to a method for extracting a curb of a road using a laser range finder and a method for localizing of a mobile robot using curb information of a road. The method for extracting the curb of the road using the laser range finder includes extracting a road surface and line segments from scan data of the laser range finder, extracting a plurality of curb candidate line segments among the line segments on the basis of an angle between the road surface and the line segment, extracting a plurality of curb candidates having a plurality of curb properties, wherein each of the plurality of curb candidates is generated by combining the couple of the curb candidate line segments, and applying the plurality of the curb candidates to a Kernel Fisher Discriminant Analysis to extract a final curb.
Abstract:
A method of patrolling a perimeter of a geographic area, using two or more unmanned vehicles having means for locomotion along a perimeter path. Each vehicle is equipped with at least the following systems: a navigation system operable to autonomously navigate the unmanned vehicle, an anomaly detection system, a communications system, an anomaly tracking system, operable to track, visually or by following, a detected anomaly, and an alert evaluation system. Each vehicle travels the path on a predetermined route, and is operable to broadcast an alert message to all other vehicles if that vehicle detects an anomaly, to perform an evaluation of any received alert message to determine if it will travel to an anomaly based on stored evaluation rules, and to respond to an alert message based on the evaluation.
Abstract:
A vehicle comprises a platform, a propulsion system, a communications system, a sensor system, and a computer system. The propulsion system, communications system, sensor system, and computer system are associated with the platform. The propulsion system is configured to move the platform on a ground. The communications system is configured to establish a wireless communications link to a remote location. The sensor system is configured to generate sensor data. The computer system is configured to run a number of control processes to perform a mission and configured to perform operations in response to a number of commands from the number of operators if the number of requests is valid.
Abstract:
Systems and methods for cloud-based social surveillance are disclosed. At least one mobile robot patrol a certain surveillance area and capture data content through various function modules. A computing device coupled with each robot collects and sends the data to a cloud-based analytics platform via network for surveillance real-time or near-real-time analysis. A cloud-based analytics platform is comprised of at least one cloud server, at least one cloud database, communication network, and user interface. Authorized users access the information related to their corresponding predetermined surveillance environment inputs and/or analytics of the inputs within the system via a user interface and/or override commands or updates generated based on the analysis.
Abstract:
The guidance system (16) is suitable for guiding a follower vehicle (14) such that it follows a leader (12). It includes a system (20) for localizing the leader (12) relative to the follower vehicle (14). The localization system (20) includes: at least two distance measuring devices (23) designed to be carried by the follower vehicle (14), each being suitable for measuring a distance (D1, D2, D3) from a reference point (25, 26, 27) of the follower vehicle (14), associated with the distance measuring device (23), to the leader (12), said reference points (25, 26, 27) being spaced apart from one another, and a computer (28), programmed to deduce the position of the leader (12) relative to the follower vehicle (14) from the distances (D1, D2, D3) measured by the measuring devices (23). A corresponding guidance method is also provided.
Abstract:
A threshold learning control system for learning a controller of a robot. The system includes a threshold learning module, a regime classifier, and an exploratory controller, each receiving sensory inputs from a sensor system of the robot. The regime classifier determines a control regime based on the received sensor inputs and communicates the control regime to the threshold learning module. The exploratory controller also receives control parameters from the threshold learning module. A control arbiter receives commands from the exploratory controller and limits from the threshold learning module, The control arbiter issues modified commands based on the received limits to the robot controller.